استخدام خوارزمية Xgboost للتنبؤ بأسعار الإغلاق لسهم شركة Apple

dc.contributor.authorروابة محمد
dc.date.accessioned2024-11-25T08:07:33Z
dc.date.available2024-11-25T08:07:33Z
dc.date.issued2024-10-31
dc.description.abstractThe aim of this study was to predict the daily closing prices of Apple Inc. stock using a machine learning model, specifically the XGBoost algorithm, to assist investors to making stock market investment decisions. The study covered the period from January 2, 2020, to July 11, 2024, with a total sample size of 1138 observations. Of these, 911 observations (80% of the total) were used for training, and 227 observations (20% of the total) were used for testing. The XGBoost model was built using the Python programming language, relying on its associated libraries, with the XGBoost library being the most important. The results of this study indicated a high predictive ability of the XGBoost algorithm based on certain performance metrics used in this study.
dc.identifier.citationروابة، محمد. استخدام خوارزمية Xgboost للتنبؤ بأسعار الإغلاق لسهم شركة Apple . مجلة إقتصاد المال والأعمال. مج09. ع02. 31 أكتوبر2024. كلية العلوم الإقتصادية والتجارية وعلوم التسيير. جامعة الوادي. [أكتب هنا تاريخ الإطلاع]. متاح على الرابط [انسخ هنا رابط التحميل].
dc.identifier.issn2543-3660
dc.identifier.urihttps://dspace.univ-eloued.dz/handle/123456789/35669
dc.language.isoen_US
dc.publisherجامعة الوادي University of Eloued
dc.subjectالتنبؤ
dc.subjectأسعار الأسهم
dc.subjectالتعلم الآلي
dc.subjectخوارزمية XGBoost
dc.subjectقرار الاستثمار
dc.titleاستخدام خوارزمية Xgboost للتنبؤ بأسعار الإغلاق لسهم شركة Apple
dc.title.alternativeUsing the XGBoost algorithm to predict the closing pricesof Apple inc. stock
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
استخدام-خوارزمية-xgboost-للتنبؤ-بأسعار-الإغلاق-لسهم-شركة-apple.pdf
Size:
649.84 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections