Comparative study of hemispherical solar distillers iron-fins

Abstract

The ratio between surface area to volume is higher in spherical distillers than traditional single slope distillers. To utilize this advantage, the study measures hemispherical distillers performance. Iron fins have been employed at different lengths and spacing in absorber plate to increase absorption area and transmit heat from hot basin plate to saline water. Three configurations have been tested under same operating conditions. First, the conventional hemispherical distiller without fins representing the reference case (CHSS). Second, the modified hemispherical distiller with fins set at 5 cm spacing (MHSS-IF5). Third, the modified hemispherical distiller with fins set at 7 cm (MHSS-IF7). Fins diameter is constant at 1.2 cm with tested length of 3, 2 and 1 cm starting from the basin absorber plate. Basin salt water is fixed at 3 cm (maximum fin length) during experiments. Results prove that fin utilization is important in performance enhancement. However, fin length effect on performance depends on spacing due to shading effect in distillers. Consequently, the fins utilization improves distiller productivity up to 56.73% with best configuration of MHSS-IF7 with 2 cm fin length and 7 cm spacing. The fins utilization is not costly in the hemispherical distiller with positive enhancement contribution leads to minimum cost per liter of produced water.

Description

Article

Keywords

Hemispherical still Fins, Productivity, Solar energy

Citation

Mohammed El Hadi Attia, A.E. Kabeel, Mohamed Abdelgaied, Wael M. El-Maghlany, Abdelkader Bellila, Comparative study of hemispherical solar distillers iron-fins, Journal of Cleaner Production, Volume 292,