Green’s Function Approach to Entanglement Entropy on Lattices

dc.date.accessioned2024-05-30T08:56:39Z
dc.date.available2024-05-30T08:56:39Z
dc.date.issued2020-02-23
dc.descriptionIntervention
dc.description.abstractWe develop a Green’s function approach to compute Rényi entanglement entropy on lattices. The Rényi entropy resulting from tracing out an arbitrary collection of subsets of coupled harmonic oscillators is written as zero temperature partition function generated by an Euclidean action with n-fold step potential. The associated Green’s function is explicitly constructed and an alternative new formula for the Rényi entropy is obtained. To show the applicability of the method we take the example of 2-coupled harmonic oscillator as an application.
dc.identifier.citationAllouche, Amel. Djamel Dou. Green’s Function Approach to Entanglement Entropy on Lattices : 2-Coupled Harmonic Oscillators Application. International PluridisciplinaryPhD Meeting (IPPM’20). 1st Edition, February23-26, 2020. University Of Eloued. [Visited in ../../….]. Available from [copy the link here].
dc.identifier.urihttps://dspace.univ-eloued.dz/handle/123456789/32815
dc.language.isoen
dc.publisherUniversity Of Eloued جامعة الوادي
dc.subjectentanglement entropy
dc.subjectRényi entropy
dc.subjectharmonic oscillator
dc.subjectGreen’s function
dc.subjectstep potential
dc.titleGreen’s Function Approach to Entanglement Entropy on Lattices
dc.title.alternative2-Coupled Harmonic Oscillators Application
dc.typeIntervention

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Green’s Function Approach to Entanglement Entropy.pdf
Size:
172.4 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: