Forecasting Electricity Consumption In Algeria Using Artificial Neural Networks

dc.contributor.authorChekouri, Sidi Mohammed
dc.contributor.authorSahed, Abdelkader
dc.date.accessioned2023-04-17T09:07:11Z
dc.date.available2023-04-17T09:07:11Z
dc.date.issued2022-06-30
dc.descriptionمقالen_US
dc.description.abstractThis paper uses artificial neural network (ANN) method to forecast electricity consumption in Algeria. For this purpose, two independent variables which are GDP (Gross Domestic Product) per capita and population are used to forecast electricity consumption. The performance of the models is measured using R squared and the mean absolute percentage error (MAPE). The results reveal that the ANN model based on modeling electricity consumption as a function of economic indicators shows better performance than the ANN time input model. Also, results show that the projected electricity consumption in Algeria will reach 76.06 and 94.66 billion Kwh in years 2020 and 2025 respectively. Thus, A better electricity forecast is important for the policy makers when building future energy plants for the country.en_US
dc.identifier.citationChekouri, Sidi Mohammed . Sahed, Abdelkader. Forecasting Electricity Consumption In Algeria Using Artificial Neural Networks. مجلة رؤى اقتصادية. مج12. العدد01. 30/06/2022 . جامعة الوادي [اكتب تاريخ الاطلاع] متاح على الرابط [انسخ رابط التحميل]en_US
dc.identifier.issn2253-0088
dc.identifier.urihttps://dspace.univ-eloued.dz/handle/123456789/19664
dc.language.isoenen_US
dc.publisherجامعة الوادي - University of Eloueden_US
dc.subjectElectricity Consumption ; Forecasting ; Artificial Neural Networks ; Algeriaen_US
dc.titleForecasting Electricity Consumption In Algeria Using Artificial Neural Networksen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Forecasting Electricity Consumption in Algeria Using Artificial Neural Networks.pdf
Size:
631.69 KB
Format:
Adobe Portable Document Format
Description:
مقال

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections