Effective Modeling of Photovoltaic Modules Using Sailfish Optimizer

dc.contributor.authorDanoune, M.B
dc.contributor.authorDjafour, A
dc.contributor.authorRehouma, Y
dc.contributor.authorDegla., .A
dc.date.accessioned2023-05-16T13:42:42Z
dc.date.available2023-05-16T13:42:42Z
dc.date.issued2022-06-22
dc.descriptionArticleen_US
dc.description.abstractThe current study proposes a novel meta-heuristic technique called sailfish optimizer (SFO) to design reliable photovoltaic (PV) modeling models. Unlike others, the proposed technique employs two populations (prey and predator) instead of one to effectively reach the desired solution. This unique propriety can substantially augment the probability of locating the global optimum as well as accelerating the search process. Moreover, to show the efficacy of the algorithm, the results are compared with some literature techniques such as Salp-Swarm-Optimizer (SSA), Whale Optimization (WOA), Artificial-Bee-Colony (ABC), and Particle-Swarm Optimization (PSO) methods. Eventually, the proposed SFO algorithm demonstrated a remarkable amelioration in terms of accuracy with Root-Mean-Square-Error of 13E-3 Aen_US
dc.identifier.citationDanoune, M.B. Djafour, A. Rehouma ,Y. Degla.A. Driss, Z.Effective Modeling of Photovoltaic Modules Using Sailfish Optimizer. International Journal of Energetica. Vo7. No 02.22/06/2022.faculty of technology. university of el oued. [visited in ../../….]. available from [copy the link here]en_US
dc.identifier.issn2543-3717
dc.identifier.urihttp://dspace.univ-eloued.dz/handle/123456789/23169
dc.language.isoenen_US
dc.publisherجامعة الوادي - university of el oueden_US
dc.subjectParameters extraction, Photovoltaic cells, Double-diode model, Meta-heuristic algorithms, Sailfish Optimizeren_US
dc.titleEffective Modeling of Photovoltaic Modules Using Sailfish Optimizeren_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Effective Modeling of Photovoltaic Modules Using Sailfish Optimizer.pdf
Size:
553.94 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections