A COMBINATION OF SCALABLE ALGORITHMS FOR OPTIMISING PI CONTROLLER

dc.contributor.authorLaroussi, K.
dc.contributor.authorIratni, A.
dc.date.accessioned2020-11-29T08:14:07Z
dc.date.available2020-11-29T08:14:07Z
dc.date.issued2017-09-01
dc.descriptionArticale in Journal of fundamental and Applied Sciences Vol. 09, N. 03en_US
dc.description.abstractIn several works using a single approach for optimization the parametres of PI controller confirms that the use of a single approach does not necessarily produce optimal results. In this paper, we propose to optimize the performance of the parametres controller by combining two scalable algorithms, genetic algorithms GA and particle Swarm PS, in order to optimize the parameters of the PI controller and to minimize the. By refining the parameters of controleur that monitor performance. Using a search engine that compares the error values of the different approaches and scenarios and, in each scenario, selects the results with the minimum error value. This method has been applied to control the speed of the induction machine. The results obtained by simulation show the high performance and robustness of this technique.en_US
dc.identifier.citationK. Laroussi, A. Iratni. A COMBINATION OF SCALABLE ALGORITHMS FOR OPTIMISING PI CONTROLLER. Journal of fundamental and Applied Sciences. Vol. 09, N. 03. 2017. [date de consultation]. Disponible à l'adresseen_US
dc.identifier.issn1112-9867
dc.identifier.urihttp://dspace.univ-eloued.dz/handle/123456789/7653
dc.language.isoenen_US
dc.publisherUniversity of Eloued جامعة الواديen_US
dc.subjectfuzzy logic, Genetic algorithm, Induction motor, optimization, particle Swarm.en_US
dc.titleA COMBINATION OF SCALABLE ALGORITHMS FOR OPTIMISING PI CONTROLLERen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A COMBINATION OF SCALABLE ALGORITHMS FOR OPTIMISING PI CONTROLLER.pdf
Size:
408.63 KB
Format:
Adobe Portable Document Format
Description:
Articale in Journal of fundamental and Applied Sciences Vol. 09, N. 03

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections