NUMERICAL APPROXIMATION OF BLACK SCHOLES STOCHASTIC DIFFERENTIAL EQUATION USING EULER-MARUYAMA AND MILSTEIN METHODS

dc.contributor.authorNwachukwu, O. O
dc.date.accessioned2023-05-29T07:58:31Z
dc.date.available2023-05-29T07:58:31Z
dc.date.issued2021-01-01
dc.descriptionARTICLEen_US
dc.description.abstractThis paper will introduce the Ito’s lemma used in the stochastic calculus to obtain the Ito-Taylor expansion of a stochastic differential equations. The Euler-Maruyama and Milstein’s methods of solving stochastic differential equations will be discussed and derived. We will apply these two numerical methods to the Black-Scholes model to obtain the values of a European call option of a stock at discretized time intervals. We will use a computer simulation to approximate while using the Ito’s formula to obtain the exact solution. The numerical approximations to the exact solution to infer on the effectiveness of the two methods.en_US
dc.identifier.citationO. O. Nwachukwu,NUMERICAL APPROXIMATION OF BLACK SCHOLES STOCHASTIC DIFFERENTIAL EQUATION USING EULER-MARUYAMA AND MILSTEIN METHODS .Journal of Fundamental and Applied Sciences.VOL13 N01.01/01/2021.university of el oued [visited in ../../….]. available from [copy the link here]en_US
dc.identifier.issn1112 9867
dc.identifier.urihttp://dspace.univ-eloued.dz/handle/123456789/24647
dc.language.isoenen_US
dc.publisheruniversity of el oued/جامعة الواديen_US
dc.subjectStochastic differential equations; Euler-Maruyama method; Milstein method; Black-Scholes equation; Call option.en_US
dc.titleNUMERICAL APPROXIMATION OF BLACK SCHOLES STOCHASTIC DIFFERENTIAL EQUATION USING EULER-MARUYAMA AND MILSTEIN METHODSen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
930-Manuscript-2935-2-10-20201229.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections