Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Soldatov, Alexander V"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Green Synthesized of Ag/Ag2O Nanoparticles Using Aqueous Leaves Extracts of Phoenix dactylifera L. and Their Azo Dye Photodegradation
    (MDPI, 2021-06-25) Laouini, Salah Eddine; Bouafia, Abderrhmane; Soldatov, Alexander V
    In this study, silver/silver oxide nanoparticles (Ag/Ag2O NPs) were successfully biosynthesized using Phoenix dactylifera L. aqueous leaves extract. The effect of different plant extract/precursor contractions (volume ratio, v/v%) on Ag/Ag2O NP formation, their optical properties, and photocatalytic activity towards azo dye degradation, i.e., Congo red (CR) and methylene blue (MB), were investigated. X-ray diffraction confirmed the crystalline nature of Ag/Ag2O NPs with a crystallite size range from 28 to 39 nm. Scanning electron microscope images showed that the Ag/Ag2O NPs have an oval and spherical shape. UV–vis spectroscopy showed that Ag/Ag2O NPs have a direct bandgap of 2.07–2.86 eV and an indirect bandgap of 1.60–1.76 eV. Fourier transform infrared analysis suggests that the synthesized Ag/Ag2O NPs might be stabilized through the interactions of -OH and C=O groups in the carbohydrates, flavonoids, tannins, and phenolic acids present in Phoenix dactylifera L. Interestingly, the prepared Ag/Ag2O NPs showed high catalytic degradation activity for CR dye. The photocatalytic degradation of the azo dye was monitored spectrophotometrically in a wavelength range of 250–900 nm, and a high decolorization efficiency (84.50%) was obtained after 50 min of reaction. As a result, the use of Phoenix dactylifera L. aqueous leaves extract offers a cost-effective and eco-friendly method.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback