Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Benissaad, S."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Natural Convection in Inclined Porous Square Enclosure
    (University of Eloued جامعة الوادي, 2018-12-10) Belazizia, A.; Benissaad, S.; Abboudi, S.
    Steady, laminar, natural convection flow in porous square enclosure with inclination angle is considered. The enclosure is filled with air and subjected to horizontal temperature gradient. Darcy-Brinkman-Forchheimer model is considered. Finite volume method is used to solve the dimensionless governing equations. The physical problem depends on five parameters: Rayleigh number (Ra =103-106), Prandtl number (Pr=0.71), Darcy number (Da=0.01), inclination angle φ=(0°-227°), porosity of the medium (ɛ=0.7) and the aspect ratio of the enclosure (A=1). The main focus of the study is on examining the effect of Rayleigh number on fluid flow and heat transfer rates. The effect of inclination angle is also considered. The results including streamlines, isotherm patterns, flow velocity and the average Nusselt number for different values of Ra and φ. The obtained results show that the increase of Ra leads to enhance heat transfer rate. The fluid particles move with greater velocity for higher thermal Rayleigh number. Also φ affects the fluid motion and heat transfer in the enclosure. Velocity and heat transfer are more important when φ takes the value (30°).

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback