Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bedoud, K."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Diagnosis Of Rotor Fault Using Neuro-fuzzy Inference System
    (University of Eloued جامعة الوادي, 2017-01-01) Merabet, H.; Bahi, T.; Drici, D.; Halem, N.; Bedoud, K.
    The three-phase induction machine (IM) has a large importance and it is widely used as electromechanical system device, and because of their; robustness, reliability, and simple design with the well developed technologies. In spite of all cited advantages, the induction machines are suscptible to various types of electrical and mechanical faults that can lead easly to excessive downtimes, which can lead to tuge losses in terms of maintenance and production. This work presents a reliable approach for diagnosis and detection of broken bar faults in induction machine. The detection of faults is based on monitoring of the stator current signal. Also the calculation of relative energy value for each level of signal decomposition is determinated by using package wavelet, and this method will be useful as data input of Adaptive Neuro-Fuzzy Inference System (ANFIS). In the ANFIS approach the adaptive Neuro-Fuzzy inference system is able to identify the rotor of induction machine state with high precision.This method is applied by using the MATLAB®/Simulink software.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback