Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Asma, Ghedeir brahim"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Sur les solutions positives d’un type d’ ́equations op ́erateurs non lin ́eaires et applications
    (2022) Asma, Ghedeir brahim
    In this memory, we establish the existence and uniqueness of solutions for the equation x = Ax + x0. where A is a monotone generalized concave operator defined on an ordered Banach space ; using the properties of a cone and the method of the monotone iterative technique. In particular, we do not require the existence of upper and lower solutions as well as the conditions of compactness and continuity. As applications, we studied a first-order initial- value problem and a two-point boundary value problem with the nonlinear Dans ce m ́emoire, On ́etablis l’existence et l’unicit ́e de solutions pour l’ ́equation x = Ax + x0. o`u A est un op ́erateur concave g ́en ́eralis ́e monotone d ́efini sur un espace de Banach ordonn ́e ; en utilisant les propri ́et ́es d’un cˆone et la m ́ethode de la technique it ́erative monotone. En particulier, on ne demande pas l’ existence de sous et sur solutions ainsi que les conditions de compacit ́e et de continuit ́e. Comme applications, nous avons ́etudi ́e un probl`eme `a valeur initiale de premier ordre et un probl`eme aux limites `a deux points avec le terme non lin ́eaire doit ˆetre monotone dans son second variable. term must be monotonic in its second variable.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback