Benhissen, NKhechekhouche, A2023-05-212023-05-212012Benhissen ,N. Khechekhouche, A. MODÉLISATION ET RÉSOLUTION NUMÉRIQUE DE L'ÉQUATION DE POISSON EN 2D PAR LA MÉTHODE DE DIFFÉRENCE FINIE CAS DE L'ÉQUATION DU TRANSFERT DE LA CHALEUR. Journal of Chemical and Petroleum Sciences. Vo1. No 01.00/00/2012.faculty of technology. university of el oued. [visited in ../../….]. available from [copy the link here]2253-0932https://dspace.univ-eloued.dz/handle/123456789/23516ArticleThe objective of this work is to solve the Poisson equation by the finite difference method is therefore to provide an approximate solution of the actual behavior of a physical phenomenon. Such as the equation of heat transfer. We will take as a model of square/rectangular plate, with different boundary conditions and we will specify also the values boundaries (the Dirichlet condition). The analysis is based on the simulation results based on certain criteria and choice of parameters that comes into play in the equation, this will give us a good understanding of the manipulation of these parameters and thus understand what is happening on environment studiedenPoisson equation, 2D, Simulation, Equation of heat transferMODÉLISATION ET RÉSOLUTION NUMÉRIQUE DE L'ÉQUATION DE POISSON EN 2D PAR LA MÉTHODE DE DIFFÉRENCE FINIE CAS DE L'ÉQUATION DU TRANSFERT DE LA CHALEURArticle