REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université d'El-Oued

Faculté de Technologie

Département d'Hydraulique et de Génie Civil

MEMOIRE

Présenté en vue de l'obtention du diplôme du Master en Hydraulique

Option : Ouvrage Hydraulique

Thème : _____

MODÈLE D'ESTIMATION DE L'ÉVAPORATION BASÉ SUR LE RAYONNEMENT SOLAIRE ET TEMPÉRATURE DE L'AIR

DU BARRAGE FOUM EL GHERZA- BISKRA

<u>Dirigé par :</u>

Dr. Assia MEZIANI

<u>Présenté par :</u> Ahmed Amar NAJAH Khalifa OUAGGADI Brahim KHELIEL

Promotion : Juin 2021

التشكرات

نشكر اللَّه سبحانه وتعالى الذي وفقنا لإِتمام هذا العمل، وانطلاقا من قول سُيد الخلق وخاتم الانبُياء والمرسلين صلى اللَّه علُيه وسلم

"لا يشكر اللَّه من لا يشكر الناس"

ما كان لهذا للبحث ان يُستقيم على هذا الحال او تجمع أشتاته لولا أن اللَّه قيض لنا من أمد لنا يد العون، وسعى معنا جاهدا بكل صدق واخلاص، الأُستاذة آسيا مزياني

والتي لم تبخل علينا يوما بمساعدتها وتوجيهاتها القيمة.

أتوجه بالشكر الخاص الى أعضاء اللجنة المناقشة ، والى كل من ساعدنا من قريب أو من بعيد .

SOMMAIRE

Remerciement	Ι						
Sommaire	II						
Liste des tableaux	III						
Liste des figures	IV						
Introduction générale	01						
CHAPITRE I - PRESENTATION DU BARRAGE- FOUM EL-GHERZA							
I.1 Introduction	03						
I.2 Situation géographique du barrage Foum El Gherza	03						
I.3 Caractéristiques climatiques de la région de Biskra	05						
I.3.1. Température	07						
I.3.2. Précipitations	08						
I.3.3. Le Vent	09						
I.3.4. Humidité relative et Humidité absolue	10						
I.3.5. La pression Atmosphérique	12						
I.3.6. L'ensoleillement	13						
I.3.7. L'évaporation	14						
I.4. Courbe ombrothermique de Gaussen	15						
I.5. Indices climatiques	16						
I.5.1. Indice d'aridité annuel de Martonne	16						
I.5.2. Indice d'aridité mensuel de Martonne	17						
I.5.3. Indice climatique d'Emberger	17						
I.6 Conclusion	19						
CHAPITRE II - METHODES D'ESTIMATION DE L'EVAPORATION DES PLANS D'							
II.1. Introduction	22						
II.2. Les Modelés d'estimation de l'évaporation des Barrages	22						
II.2.1. Méthode directe « Bac Colorado »	22						

II.2.2. Les méthodes Indirectes -Modelés d'estimation de L'évaporation dans les régions Semi-arides	23							
II.3. Calcul de l'évaporation inter-annuelle (2000-2020)	25							
II.4. Conclusion	37							
CHAPITRE III - ELABORATION D'UN MODELE UNIQUE D'ESTIMATIO DE L'EVAPORATION								
III.1. Introduction	39							
III.1.1. Nouveau modèle d'estimation de l'évaporation	39							
III.1.2. Analyse statistique des paramètres hydro-climatiques	39							
III.1.3. Validation du modèle	48							
III.2. Résultats et discussion	48							
III.3. Conclusion	69							
CHAPITRE IV - ETUDE COMPARATIVE DES METHODES D'ESTIMATION L'EVAPORATION	DE							
IV.1 Introduction	71							
IV.2. Présentation graphique des modèles choisis et proposés	71							
IV.3. Calcul des erreurs des modèles d'estimation	72							
IV.4. Calcul des erreurs pour chaque modèle	73							
VI.5 Conclusion	76							
Conclusion Général	78							

LISTE DES TABLEAUX

Tableau I.1: Fiche technique du barrage Foum El Gherza	06
Tableau I.2: Variation annuelle de la température de la région de Biskra (2000-2020)	07
Tableau I.3: Variation des précipitations mensuelles en fonction des températures mensuelles (2000-2020)	08
Tableau I.4: Variations mensuelles de vitesse des vents (2000-2020)	10
Tableau I.5 : Variation mensuelle de l'humidité relative et absolue en fonction de la température (2000-2020)	11
Tableau I.6 : Variation de la pression atmosphérique (2000-2020)	12
Tableau I.7:Variation de la rayonnement solaire (2000-2020)	13
Tableau I.8:Variation de l'évaporation (2000-2020)	14
Tableau I.9: Température set précipitations moyennes mensuelles(2000-2020)	15
Tableau I.10: Les valeurs d'indices d'aridité mensuels de Martonne, à la station de Biskra (2000-2020)	17
Tableau I.11 : Indice d'Emberger	17
Tableau II.1 : Les différents modèles d'estimations de l'évaporation des plans d'eau	24
Tableau II.2.1- Abtew-1 (1996)	25
Tableau II.2.2- Abtew-2 (1996)	26
Tableau II.2.3-Boyed (1985)	26
Tableau II.2.4- Caprio	26
Tableau II.2.5-Hargreaves(1975)	27
Tableau II.2.6-Irmak-Allen	27
Tableau II.2.7-Irmak et ala (2003)	27
Tableau II.2.8- Irmak et alb (2003)	28
Tableau II.2.9- Jensen & Haise 1(1963)	28
Tableau II.2.10- Jensen & Haise 2(1963)	28
Tableau II.2.11- Jensen et al.	29
Tableau II.2.12- Makkink (1975)	29

Tableau II.2.13- Oudin (2004)	29
Tableau II.2.14- Priestley et al.	30
Tableau II.2.15- Tabari and Talaee	30
Tableau II.2.16- Turc (2004)	30
Tableau III.1 : Le coefficient d'ajustement ou de corrélation	41
Tableau III.2 : Matrice de corrélation des modelés choisis	42
Tableau III.3 : Analyse de la variance (EVP (mm))	42
Tableau III.4 : Paramètre de modèle EVP	42
Tableau III.5 : Coefficients normalisés (EVPmes)	43
Tableau III.6 : Prédictions et résidus (EVPmes)	43
Tableau III.7 : Prédictions et résidus (EVP calculée (mm))	47
Tableau III.8 : Résultats numériques obtenus par le nouveau modèle proposée	49
Tableau III.9 : Le critère de Nash de Modèle numérique proposé dans le barrage Foum El Gherza (2000-2020)	68
Tableau IV.1 : Calcul des erreurs pour chaque modèle	73

LISTE DES FIGURES

Figure I.1.Carte du réseau hydrographique de la région de Biskra (ANAT, 2014)	04
Figure I.2.BarragedeFoum–El-Gherza, 01 Mars2017	05
Figure I.3. Station pluviométrique du Barrage Foum- El Gherza, Mars 2017	06
Figure I.4.Températuresmoyennesmaximales, minimales et annuelles de la région de Biskra durant la période (2000-2020)	07
Figure I.5. Précipitations moyennes mensuelles de la région de Biskra (2000-2020)	08
Figure I.6. Evolution des précipitations et des températures mensuelles (2000-2020)	09
Figure I.7. Variation de vitesse des vents moyens mensuels (km/h) (2000-2020)	10
Figure I.8. Variation de l'humidité relative en fonction de la température (2000-2020)	11
Figure I.9. Variation de l'humidité absolue en fonction de la température (2000-2020)	12
Figure I.10. Variation de la pression atmosphérique pendant la période (2000-2020)	13
Figure I.11 : Variation de l'insolation mensuelle de la région de Biskra (2001-2020) Foum El Gherza	14
Figure I.12 : Variation de l'évaporation moyenne mensuelle de Foum El Gherza dans le période (2000-2020)	15
Figure I.13.Diagramme Ombrothermique de GAUSSEN (2000-2020)	16
Figure I.14.Climagramme d'Emberger	18
Figure II.1. Bac d'évaporation du barrage Foum El- Gherza 2020	20
Figure II.2 : Bac flottant (Aldomany, 2017)	21
Figure II.3 : Les résultats graphiques obtenus par les modèles utiliser dans le barrage de Foum El Gherza entre la période de 2000-2020	25
Figure II.4. Corrélation entre les résultats des modèles choisis et l'évaporation mesurée	28
Figure III.1 : L'interface de logiciel XLSTAT	40
Figure III.2 : Présentation graphique de l'ajustement du modèle avec les données mesurées de l'évaporation	44
Figure III.3 : Présentation graphique de l'ajustement du modèle avec les données mesurées de l'évaporation	45
Figure III.4 : Présentation spatiale des l'évaporation calculée par le modèle et celui mesurées sur terrain	45

Figure III. 5 : Présentation spatiale de l'évaporation calculée par le modèle et celui mesurées sur terrain	46
Figure III.6 : Présentation graphique de l'évaporation calculée par le et celle mesurée par le bac	56
Figure III.7 : Variation l'évaporation inter- annuelle par le nouveau modèle et l'évaporation de bac durant la période (2000-2020)	67
Figure IV.1: Présentation graphique des modèles-Barrage Foum El Gherza-(2000-2020)	71

تهدف هذه الدراسة إلى إيجاد معادلة جديدة تمكن من الحصول على تقدير جيد لظاهرة التبخر في سد فم الغرزة الواقع في شرق ولاية بسكرة، ذات المناخ شبه الجاف، بحيث تساعدنا هذه الأخيرة في حساب قيم التبخر بطريقة سهلة وبسيطة دون الحاجة لأخذ قياسات ميدانية (قياسات مباشرة)، ففي هذا السياق قمنا باستعمال المعطيات المناخية مثل درجة الحرارة والإشعاع الشمسى فقط.

قمنا صياغة المعادلة الجديدة ثم مقارنة نتائجها العددية والبيانية مع نماذج مختارة قصد تأكيد فعاليتها وموثوقيتها.

الكلمات المفتاحية: التبخر، النموذج العددي، المعطيات المناخية، سد فم الغرزة

<u>Résumé :</u>

Le but de cette étude est de trouver une nouvelle équation qui nous permettra d'obtenir une bonne estimation du phénomène d'évaporation du barrage Foum El-Gherza, situé à l'est de la ville de Biskra qui est caractérisée par un climat semi-aride, cette dernière nous aide à calculer les valeurs d'évaporation de manière simple et facile sans avoir à effectuer de mesures sur le terrain. Dans ce contexte, nous avons utilisé des données climatiques telles que : la température, le rayon solaire (Insolation) pour formuler la nouvelle équation.

Ensuite, nous avons comparé les résultats numériques et graphiques avec les modèles choisis afin de confirmer son efficacité et sa fiabilité.

Mots clés : Evaporation-Modèle numérique-Barrage Foum-El- Gherza - Climat semi-aride

Abstract:

The purpose of this study is to find a new equation that leads to estimate the evaporation from the Foum El- Gherza dam, located in the east of Biskra city of which is characterized by a semi-arid climate. So, it helps us to calculate evaporation values in a simple and easy way without having to carry out direct measurements using classic method (evaporation pans). In this subject, we used climate data such as: temperature, Solare radiation to formulate the proposed equation.

Then, we compared numerical and graphical results with selected models to confirm its efficiency and reliability.

Keywords: Evaporation-numerical model-Foum El- Gherza Dam- Semi-arid climate.

Introduction Générale

L'évaporation est le retour de vapeur d'eau dans l'atmosphère par diffusion de molécules d'eau provenant de la terre, de la végétation, des plans d'eau et d'autres surfaces humides. Cependant, l'évaporation est le plus souvent utilisée en référence à la perte d'eau des surfaces des plans d'eau ou d'autres objets non vivants, tandis que la perte d'eau de la végétation est appelée transpiration.

Au sud algérien, les ressources en eau disponible sont en quantité limité en raison des activités humaines : la croissance démographique, urbanisation, augmentation du niveau de vie. Le changement climatique et les variations de conditions naturelles aggravent ces pressions.

Dans les régions où les ressources en eau sont limitées, la moindre perturbation d'un seul compartiment du cycle hydrologique peut avoir des répercussions majeures sur l'ensemble du cycle et sur la disponibilité en eau pour les différents usages. Les perturbations peuvent être d'origine climatique ou anthropique (Remini, 2009). L'évaporation constitue un des éléments de cycle hydrologique.

Dans ce mémoire, nous accordons une attention particulière à l'estimation de l'évaporation de la retenue du barrage Foum El-Gherza situé au sud Algérien. Plusieurs méthodes d'estimation sont connues (méthodes climatiques, méthodes empiriques,). En général, l'équation du bilan hydrique constitue une des méthodes de prévision en Hydrologie. L'estimation quantitative par cette méthode nécessite des données bien précises L'objectif de notre travail est bien l'estimation de l'évaporation par des méthodes choisies pendant une durée de plus de 21 ans, l'étude permettra de connaître l'évolution de l'évaporation dans la retenue du barrage. Pour cela, notre mémoire est subdivisé en 4 axes essentiels :

Introduction Générale

Chapitre I : Présentation du Barrage- Foum El-Gherza

Chapitre II : Méthodes d'estimation de l'évaporation des plans d'eau

Chapitre III : Elaboration d'un modèle unique d'estimation de l'évaporation

Chapitre IV : Etude comparative des méthodes d'estimation de l'évaporation

Résultats et Discussion Conclusion Générale

CHAPITRE I

PRÉSENTATION GÉNERALE DU BARRAGE FOUM EL GHERZA

I.1. Introduction

Le présent chapitre fait l'objet d'une présentation et une analyse climatique de la région où se trouve notre Barrage « Foum-El Gherza ». La région de Biskra s'étend jusqu'à la zone du Chott Melghir au Sud-Est et jusqu'à l'Erg oriental au Sud-Ouest avec (latitude 34° 52' N, longitude 5° 38' E) et son altitude est de 125 mètres au-dessus du niveau de la mer. Le réseau hydrographique de la région est formé par quatre principaux Oueds : Oued Biskra, Oued El- Arab, Oued Abiodet Oued Djeddi. Celui qui alimente notre Barrages bien celui d'Oued El-Biod.

I.2. Situation géographique du barrage Foum El Gherza

Le barrage de Foum-El-Gherza est situé à l'Est algérien, destiné à l'irrigation, au pied du massif des Aurès à 18 Km à l'Est de Biskra et à environ 400 Km au sud-est d'Alger. Cet ouvrage d'art a un rôle de régulariser le régime du bassin versant d'Oued El-Abiodh (Figure I.1).

Le bassin versant Oued Labiod est situé dans le massif des Aurès (partie orientale de l'Atlas saharien), il fait partie du grand bassin hydrologique de Chott Melghir. Il est composé de trois principaux Oueds : Oued Labiod, Oued Chenawra et Oued de T'kout formant par leur confluence Oued Ghassira. L'ensemble de ces Oueds cheminent vers le Sud et se déversent dans Chott Melghir. L'Oued Labiod est formé par la réunion des torrents descendants des raides pentes de Chelia (232 6m) et Ichemoul (2100 m) (Houes, 2008). La surface du bassin versant = 1050 km² et le périmètre du bassin versant = 160 km. Le coefficient de Gravelius Kc est de 1.38 d'où le bassin a une forme allongée.

Figure I.2. Barrage de Foum–El-Gherza, Mars 2020.

Les caractéristiques techniques du Barrage de Foum-El Gherza sont :

Capacité Initiale :47 Hm³. Capacité Actuelle 12.89 Hm³ (levé 2007). Surface de la Bassin Versant :1300Km². Apport Annuelle moyen : 21Hm³. Volume Régularisé : 13 Hm³. Hauteur Hors sol : 65m. Hauteur à partir de la fondation :73 m. Longueur voute : 126 m. Longueur culée :60m. Largeur du barrage au niveau de la fondation : 8.40m. Largeur en crête : 3m. Rayon de courbure : 80m. Côte de la Retenu Niveau Normal :198m. Côte des plus hautes eaux : 23.25m. Taille du béton usagé : 40.000m³.

I.3. Caractéristiques climatiques de la région de Biskra

La station météorologique de Biskra (ONM) est la seule station existante qui fonctionne depuis 1913 et est donc représentative du contexte d'étude. Toutefois les enregistrements ne sont disponibles qu'à partir de 1967. Notons que les données climatologiques de la station de Biskra sont obtenues du site web climatologique (https://fr.tutiempo.net/, 2020) mentionnées ci-dessous.

Pluviométrique

Foum El Ghe	erza (W. Biskra, à 11 km Nord de Sidi Okba)
Coordonnées	Lat. 35°51'08" N Long. 5°55'30" E
Туре	Combiné poids –voûte
Evacuateur de crue	A surface libre dans la partie centrale
Vidange de fond	Galerie blindée 2*2 m, pertuis de vidange.
Prise d'eau	Tour semi-cylindrique accolée à l'amont du barrage à trois
Hauteur (m)	73
NNR (m NGA)	198.90
Niveau de la crête (m NGA)	204.25
Niveau max (m NGA)	203.25
Longueur en crête	60 m (culée) +126 m (voute)
Largeur en crête :	6.25 m (culée) + 3 m (voute)
Epaisseur maximale en pied	22.1 m (culée) + 8.4 m (voute)
Rayon de courbure	80 m
Capacité initiale (hm ³)	47
Mise en eau	1950
Capacité actuelle (hm^)	12.90
Destination	Irrigation des palmeraies Electricité abandonnée

Tableau I.1: Fiche technique du barrage Foum El Gherza

Tmin(C[°])

Tmoy(C°)

9.4

11.9

10.7

13.5

16.0

17.7

18.7

21.8

I.3. 1. Température

La variation de la température agit directement sur le phénomène d'évapotranspiration et par conséquent le déficit d'écoulement annuel et saisonnier. On dispose des données de températures moyennes mensuelles de la station de Biskra période de (2000-2020).

Pour évaluer la variation des températures moyennes et maximum et minimum mensuelles, nous avons établi le tableau et l'histogramme relatif à cette station. On constate deux périodes, la température décroît du mois de Juillet (maximum :37.1°C) jusqu'au mois de Janvier (minimum :9.4°C)

Mois Jul Déc Jan Fev Mar Avr Mai Jun Aou Sep Oct Nov Tmax(C°) 13.7 16.2 21.3 23.4 28.9 34.3 37.1 35.7 33.3 26.9 23.0 15.0

23.1

31.7

29.8

35.2

31.8

34.2

27.1

29.4

21.9

23.8

15.3

17.2

11.2

12.7

23.1

26.6

Tableau I.2: Variation mensuelle de la température de la région de Biskra (2000-2020)

Figure I.4. Températures moyennes maximales, minimales et annuelles de la région de Biskra durant la période (2000-2020)

7

I.3.2. Précipitations

La pluviométrie est l'étude des précipitations, de leur quantité et de leur répartition dans le temps et dans l'espace. La région de Biskra est caractérisée par une faible pluviométrie, les pluies tombent d'une manière irrégulière. Le tableau I.3, montre que la pluviométrie atteint sa valeur maximale au mois d'Octobre (26.33 mm) et elle est minimale le mois de Juillet (1.35 mm).

Tableau I.3: Variation des précipitations mensuelles en fonction des températures mensuelles

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
P(mm)	2.67	5.99	19.66	16.00	9.20	6.63	1.35	2.97	16.00	26.33	14.24	9.59
Tmoy(C°)	11.88	13.50	17.66	21.80	26.59	31.72	35.15	34.18	29.39	23.84	17.22	12.74

(2000-2020)

Figure I.5. Précipitations moyennes mensuelles de la région de Biskra (2000-2020).

Figure I.6. Evolution des précipitations et des températures mensuelles (2000-2020)

La figure I.6, présente l'évolution des variables température et précipitations au cours des 12 mois. D'une manière générale, on constate que lors des pluies les températures sont plus élevées (Exemples les mois de Janvier, février, Mai, juin, juillet, Aout et Septembre). Ceci s'explique par le fait que les nuages responsables des pluies limitent l'échappement de la chaleur terrestre vers la haute atmosphère. Pendant les mois Mars, Avril, Octobre, Novembre et Décembre, on constate que lorsque les pluies tombent les températures diminuent.

I. 3.3. Le Vent

La mesure de la vitesse du vent est effectuée généralement à des hauteurs manométriques égales à 2 mètres du sol.

Le vent joue un rôle essentiel sur l'évaporation. En effet, l'air au voisinage de la surface évaporant se sature plus ou moins rapidement et peut arrêter le processus d'évaporation. L'air saturé est remplacé par de l'air plus sec au voisinage de la surface évaporante en raison des mélanges et mouvements créés par le vent.

Les vents dominants à Biskra sont du Nord-Ouest avec un degré moindre à ceux du Nord. Ces derniers soufflent de novembre à Mai, sont des vents moyens et Chauds. De mois de juillet au mois de septembre sévissent les vents du Sud (ANAT,2013).

9

Mois	J	F	М	А	Μ	J	J	A	S	0	Ν	D
V(km/h)	8.50	7.50	16.0	19.33	20.00	16.50	10.00	9.00	8.67	7.00	12.07	12.00

Tableau I.4: Variations mensuelles de vitesse des vents (2000-2020)

Figure I.7. Variation de vitesse des vents moyens mensuels (km/h) (2000-2020).

D'après le tableau I.4, la vitesse maximale du vent est enregistrée durant le mois de Mai avec une moyenne de 20.00 km/h. Le minimum est enregistré durant le mois d'Octobre avec une vitesse de 7.00 km/h.

I.3.4. Humidité relative et Humidité absolue

L'humidité relative, c'est le pourcentage de vapeur d'eau que contient l'air par rapport à ce qu'il peut contenir au maximum, c'est à dire par rapport à la saturation. Elle est mesurée à l'aide d'un hygromètre. Alors que l'humidité absolue, c'est la quantité d'eau que l'air contient (en pression de vapeur).

Autrement dit : Humidité absolue=Humidité relative*la quantité d'eau saturation Plus l'air est chaud plus il peut contenir de vapeur d'eau (ou d'humidité). Les variations de la température influencent directement l'humidité relative, de sorte que l'humidité relative baisse quand la température s'élève et augmente lorsque la température baisse.

10

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
Hr(%)	57.50	42.50	40.00	31.00	32.48	28.00	25.00	28.00	38.33	44.00	53.19	65.00
Tmoy(C°)	11.88	13.50	17.66	21.80	26.59	31.72	35.15	34.18	29.39	23.84	17.22	12.74
Ha(g/kg)	8.34	10.64	11.36	17.20	22.68	29.92	38.75	34.85	25.58	18.30	14.70	9.12

 Tableau I.5 : Variation mensuelle de l'humidité relative et absolue en fonction de la température (2000-2020)

Du tableau I.5, nous constatons que le mois le plus humide est le mois de Décembre puisque la valeur de l'humidité relative attient 65%. Alors que le mois le plus sec est le mois de Juillet d'une humidité relative de 25%. La figure I.8, nous montre que l'humidité relative varie brusquement avec la température.

Figure I.8. Variation de l'humidité relative en fonction de la température (2000-2020)

Figure I.9. Variation de l'humidité absolue en fonction de la température (2000-2020)

On peut conclure que quand le climat est humide, la valeur de l'humidité absolue diminue et quand il s'agit un climat sec sa valeur augmente. Dans notre région où se localise notre barrage, la valeur minimale est enregistrée au mois de Janvier (8.34 g/kg) et maximale au mois de juillet (38.75 g/kg). La figure I.9, nous montre que l'humidité absolue varie progressivement avec la température.

I.3.5. La pression Atmosphérique

Pour chaque liquide il existe une relation précise entre pression et température d'ébullition, on peut définir la température d'ébullition comme le moment ou apparaît la première bulle de vapeur à la surface d'un liquide. La température d'ébullition de l'eau à la pression atmosphérique au niveau de la mer (1 Bar =100 kPa) est de 100°C,

Tableau I.6 : Variation de la pression atmosphérique (2000-2020)

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
P(kPa)	97.91	97.64	97.43	97.15	97.27	97.31	97.21	97.30	97.41	97.55	97.68	97.94
Tmoy(C°)	11.88	13.50	17.66	21.80	26.59	31.72	35.15	34.18	29.39	23.84	17.22	12.74

Figure I.10. Variation de la pression atmosphérique pendant la période (2000-2020)

Quand l'air est plus chaud, donc plus léger, la pression atmosphérique est faible. Quand la pression atmosphérique est haute, c'est l'inverse. C'est le phénomène de l'anticyclone qui annonce un temps dégagé. La pression atmosphérique est faible au mois de juillet (97.21 kPa) et élevée au mois de décembre (97.94 kPa).

III.6. L'ensoleillement

D'après les données climatiques actuelles de la station de Biskra période 2000/2020.Le nombre moyen d'heures d'ensoleillement varie de 214 h/mois en Décembre à 356 au mois de Juillet pendant la période estivale (Juin-Août), la région de Biskra reçoit plus de100 heures par mois.

Tableau I.7: Variation de la rayonnement solaire (2000-2020)

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Rs (KWh/m²/mois)	86.4	117.6	153.6	189.9	216.6	232.2	228.9	206.1	161.7	124.5	91.5	76.5

I.3.6. L'évaporation

L'évaporation et le processus par lequel un liquide se transforme en vapeur ou en gaz. L'évaporation se produit à partir d'un plan d'eau quand l'atmosphère au-dessus de celui-ci a une humidité relative inférieure à 100%. La principale source d'énergie susceptible de provoquer l'évaporation est le rayonnement solaire. La quantité d'eau évaporée dépend de la vitesse du vent et du degré de turbulence de l'air au-dessus de la surface évaporant, ainsi que de la différence de tension de vapeur entre le plan d'eau et l'air non saturé au-dessus de celui- ci.

D'après les données l'évaporation de station de barrage de Foum el Gherza dans la période (2001-2020), nous constatons quel mois le plus évaporée est le mois de Juillet puisque la valeur de l'évaporation attient 399.75 mm. Alors que le minimum de l'évaporation dans le mois de Décembre est 78.18 mm.

Tableau I.8: Variation de l'évaporation (2000-2020)

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
Evp (mm/j)	79.50	99.28	167.78	214.72	295.09	350.45	399.75	364.37	260.82	190.85	120.63	78.18

Figure I.12 : Variation de l'évaporation moyenne mensuelle de Foum El Gherza dans le période (2001-2020).

I.4. Courbe ombrothermique de Gaussen

La figure I.12, relative à la courbe Ombro-thermique montre, que le climat de la région étudiée est caractérisé par une seule saison sèche (Vu que la courbe de précipitations est sous la courbe des températures), s'étalant sur toute l'année. Il s'agit donc d'un climat d'une zone aride.

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
P(mm)	2.97	5.99	19.66	16.00	29.00	6.63	1.35	2.97	16.00	26.33	14.24	9.59
T(C°)	11.88	13.50	17.66	21.80	26.59	31.72	35.15	34.18	29.39	23.84	17.22	12.74
2T(C°)	23.75	27.00	35.32	43.60	53.18	63.44	70.30	68.35	58.77	47.68	34.45	25.48

Tableau I.9: Température set précipitations moyennes mensuelles (2000-2020)

Figure I.13. Diagramme Ombrothermique de GAUSSEN (2000-2020).

I.5. Indices climatiques

Afin de bien classifier le climat de la région de Biskra d'autres indices climatiques ont été calculés :

I.5.1. Indice d'aridité annuel de MARTONNE :

En 1923, Martonne défini un indice appelé « indice d'aridité annuel », donné par la formule suivante :

$$I = \frac{\text{Pmoy}}{\text{Tmoy} + 10}$$

Avec :

Pmoy: Précipitations moyennes annuelles(mm).

Tmoy: Températures moyennes annuelles(°C).

En fonction de la valeur de l'indicede M/artonne:

- ✓ I<5: Climathyper-aride
- ✓ 5 < I < 10: Climataride
- ✓ 10<I<20: Climat semi-aride
- ✓ 20 < I < 30: Climat semi-aride
- ✓ I>30: Climat humide.

Application numérique :P=139.03mm ; T=16.96°C

I= 5,16, d'où la région de Biskra au climat

I.5.2. Indice d'aridité mensuel de Martonne

Un autre indice d'aridité peut être calculé par mois : Il est défini par l'expression :

$$a = \frac{12P}{T+10}$$

P: précipitations moyennes mensuelles(m/m)

T : températures moyennes mensuelles(C $^{\circ})$

Les valeurs de l'indice d'aridité mensuel sont reportées au tableau I.9

Tableau I.10: Les valeurs d'indices d'aridité mensuels de Martonne, à la station de Biskra (2000-2020)

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
P(mm)	2.97	5.99	19.66	16.00	29.00	6.63	1.35	2.97	16.00	26.33	14.24	9.59
T(C°)	11.88	13.50	17.66	21.80	26.59	31.72	35.15	34.18	29.39	23.84	17.22	12.74
a	1.63	3.06	8.53	6.04	9.51	1.91	0.36	0.81	4.87	9.34	6.28	5.06

D'après le tableau I.10, les mois de Janvier, février, Mai, Juin, juillet et Aout sont classés comme Hyper-aride et les mois de Mars, Avril, Septembre, Octobre, Novembre et Décembre sont caractérisés par un régime aride.

I.5.3. Indice climatique d'Emberger

L'indice climatique d'Emberger, est défini par l'expression suivante :

$$Q=2000 \ \frac{P}{(M^2-m^2)}$$

Avec :

Q: quotient pluviométrique d'Emberger.

P: précipitations moyennes annuelles en mm.

M : moyenne des températures maximales du mois le plus chaud, en degré absolu T°C+ 273(°K). m : moyenne des températures minimales du mois le plus froid, en degré absolu T°C+ 273 (°K).

Tableau I.11 : Indice d'Emberger

P(mm)	M(°K)	M (°K)	Q
139.03	315.33	279.54	13.06

L'indice d'Emberger de la station de Biskra est de 13.06 calculé à partir des données climatiques obtenues durant une période de 20 ans (2000-2020), en reportant cette valeur sur le climagramme d'Emberger (Figure I.14), on constate que la région est soumise à un climat « aride ».

Figure I.14. Climagramme d'Emberger

I.6. CONCLUSION

D'après une analyse des données climatiques de la région de Biskra durant les 20 années passées, et où se situe notre barrage étudié. Nous confirmons que le climat de la région est bien un climat aride. Les caractéristiques de la région sont :

- ✤ La température moyenne mensuelle est de 11,88°C au mois de Janvier et 35,15°C au mois de Juillet.
- La vitesse des vents moyens mensuels est de 4m/s au mois de Décembre et 5.9m/s au mois d'Avril.
- L'humidité relative dans les mois Mars, Avril et Mai, respectivement de l'ordre de 54%,59%,57% et dans le mois de Novembre 26%
- ✤ L'ensoleillement est 76.7 KWh/mois en Décembre à 232.2 au mois de Juillet
- ✤ L'évaporation mensuelle maximale est de 399.75 mm au mois d'Aout.
- ✤ L'évaporation mensuelle minimale est de 78.18 mm au mois de Février.
- La précipitation d'Ain Touta (262,37 mm) est moins importante que celle de la station de chaabet Ouled chelih (413,8mm).
- ✤ La précipitation de stations est de l'ordre de 361 mètres.

CHAPITRE II

LES METHODES D'ESTIMATION DE L'EVAPORATION DANS LA REGION SEMI-ARIDE

II.1. Introduction

Ce chapitre fait l'objet de présenter les méthodes d'estimation de l'évaporation, cas des mesures indirect en utilisant des 20 modèles des différents chercheurs avec des mesures directes en utilisant le « Bac Colorado » classe-A au niveau de la station pluviométrique de barrage FOUM EL-GHERZA.

II.2. Les Modelés d'estimation de l'évaporation de Barrage

II.2.1. Méthode directe « Bac Colorado »

La mesure directe de l'évaporation se fait généralement au moyen du bac d'évaporation qui est un contenant de section cylindrique ou carrée dont les variations du niveau d'eau, mesurées à des intervalles de temps fixes (jour, semaine, décade), sont un reflet de l'intensité de l'évaporation. L'avantage principal des bacs est leur économie et leur facilité d'installation ; leur inconvénient est la difficulté d'évaluer les effets du rayonnement direct et le transfert de chaleur à travers les parois.

- Le bac de classe A : Développé par le Weather Bureau. Bac rond de 122 cm de diamètre, 25,4 cm de profondeur. Il est posé à 18 cm au-dessus du sol et l'eau à l'intérieur du bac doit affleurer à 5-8 cm du bord. Étant petit, il est soumis à un problème d'inertie thermique trop faible. (Vachala, 2008)

- Le bac Colorado : Est un bac carré de 91,4 cm de côté, et de 46 à 91cm de profondeur. Il est enterré de manière à ce que son rebord soit à 10cm au-dessus de la surface du sol. De fait, il représente mieux l'inertie thermique. Il existe des variantes du bac Colorado, notamment la version ORSTOM. (Vachala,2008)

Figure II.1. Bac d'évaporation du barrage Foum El- Gherza 2019

- Les bacs flottants : sont partiellement immergés à la surface de l'eau. Cette mesure est la plus représentative des conditions d'évaporation de la surface d'eau libre mais très difficile à mettre en œuvre et très coûteuse.

Figure II.2: Bac flottant (Aldomany, 2017)

II.2.2. Les méthodes Indirectes -Modelés d'estimation de L'évaporation dans les régions Semi-arides

Les différents modèles d'estimation de l'évaporation couramment utilisé sont citées dans le tableau ci-dessous :

Tableau II.1Les différents modèles d'estimations de l'évaporation des plans d'eau

N°	REFERENCE	LES FORMULES	UNITES
01	Abtew-1(1996)	$ET0 = 0.52.Tmax.(Rs/\lambda)$	mm/mois
02	Abtew-2(1996)	$ET0 = (Tmax/56).(Rs/\lambda)$	mm/mois
03	Boyed 1985	ET0 = 9.94+(5.039Tmoy)*0.8	mm/mois
04	Caprio	ET0 = (6, 1/106).Rs.(1, 8Tmean+1, 0)	mm/mois
05	Hargreaves (1975)	$ET0 = [0.0135(Tmean + 17.8)Rs]/\lambda$	mm/mois
06	Irmak-Allen 2003	ET0 = 0.489 + 0.289 Rs + 0.023 Tmean	mm/mois
07	Irmak et al. (2003)-a	ET0 = 0,149Rs + 0,079Ta -0,611	mm/mois
08	Irmak et al. (2003)-b	ET0 = 0,174Rs + 0,0353Ta - 0,642	mm/mois
09	Irmak et al.(2003)-1	ET0= -0.611 + 0.149Rs + 0.079Tmean	mm/mois
10	Irmak et al.(2003)-2	ET0 = 0.489 + 0.289Rs + 0.023Tmean	mm/mois
11	Jensen &Haise 1 (1963)	$ET0 = (0.025.Tmean + 0.08)Rs/\lambda$	mm/mois
12	Jensen &Haise 2 (1963)	ET0 = 0,03523.Rs.(0,014Tmean-0,37)	mm/mois
13	Jensen et al.	$ET0 = (Rs/\lambda).(0.025Tmean + 0.08)$	mm/mois
14	Makkink 1975	ET0 = 0,61.($\Delta/(\Delta+\gamma)$.(Rs/ λ)-0,12	mm/mois
15	McGuinness et al.	ET0 = (0.0082Tmean - 0.19).(2,54Rs/1500)	mm/mois
16	Oudin (2004)	$ET0 = (Rs/\lambda).(Tmean + 5)/100$	mm/mois
17	Priestley et al.	$ET0 = \alpha.(\Delta/\Delta + \gamma).(Rs/\lambda)$	mm/mois
18	Tabari and Talaee (2011)	ET0 = -0.642 + 0.174Rs + 0.0353Tmean	mm/mois
19	Turc (1961)	ET0 =0,013.(T/T+15).(Rs+50) >> RH>50	mm/mois
20	Turc (1961)	ET0 = 0,013.(T/T+15).(Rs+50).(1+[(50-RH)/70)]) >> RH<50	mm/mois

Pa: Pression de l'atmosphère (kPa)

ETO: l'évaporation de la surface d'eau

T: Température de l'air (C°)

Rs: Rayon Solaire (MJ) (1 Kilowatt heur = 3.6 Mega Joul) (1 KWh/m²/mois = 30 KWh/m²/j = 108 MJ)

λ :Chaleur latente de l'eau (MJ kg-1) = 2.501-2.36*10-3T (

 $\Delta : \text{pente de la pression de vapeur saturée à la température moyenne de l'air (kPa/°C) (mbar/°C)}$ $(mmHg/°C) \qquad \Delta = \frac{2504 \ e^{(17,27 \ T/ \ T+273,3)}}{(T + 273,3)^2}$

 γ : constante psychrométrique (même unités que Δ) = 0,065 kPa/°C = 0,65 mbar/°C = 0,486 mmHg/°C

II.3. Calcul de l'évaporation inter-annuelle (2000-2020)

II.3. 1- Abtew-1 (1996)

ET0 = 0.52Tmax(Rs*/ λ), Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
Τ°	11,88	13,50	17,66	21,8	26,59	31,71	35,152	34,17	29,38	23,83	17,22	12,73
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	7,20	11,15	19,10	29,29	40,93	52,61	57,70	50,47	33,86	21,06	11,09	6,83

II.3. 2- Abtew-2 (1996)

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	26,70	41,35	70,85	108,62	151,78	195,12	214,00	187,19	125,57	78,10	41,13	25,32

ET0 = $(Tmax/56)(Rs/\lambda)$, Nous donnes les résultats suivants :

II.3. 3- Boyed (1985)

ET0 = 9.94 + (5.039 * Tmoy), Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	69,78	77,97	98,94	119,79	143,93	169,77	187,07	182,15	158,01	130,06	96,73	74,13

II.3. 4- Caprio

ET0 = (6,1/106)Rs(1,8Tmean+1,0), Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

II.3.5- Hargreaves (1975)

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	54,18	77,84	115,51	160,21	205,75	247,35	261,76	231,16	163,72	110,78	67,92	49,28

ET0=0,0145(T+17,8)(Rs/ λ), Nous donnes les résultats suivants :

II.3. 6- Irmak-Allen

ET0 = 0.489 + 0.289 Rs + 0.023T, Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
Τ°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	30,82	35,16	45,84	56,47	68,63	81,52	90,01	87,37	75,04	60,90	44,15	32,87

II.3. 7- Irmak et al.-a (2003)

ET0 = 0,149Rs + 0,079Ta - 0,611, Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
Τ°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	81,73	112,29	167,02	221,85	277,01	329,17	356,76	336,22	271,43	204,23	129,99	83,67

II.3. 8- Irmak et al.-b (2003)

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	30,12	55,81	94,13	132,70	167,65	197,01	208,11	190,13	143,94	99,59	53,58	27,08

ET0 = 0,174Rs+0,0353Ta-0,642, Nous donnes les résultats suivants :

II.3. 9- Jensen & Haise 1(1963)

ET0 = (0.025.Tmean + 0.08)Rs/ λ , Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	64,93	98,19	161,33	240,80	329,46	416,89	453,53	397,56	270,04	171,43	94,00	60,75

II.3. 10- Jensen & Haise 2(1963)

ET0 = $(Rs/\lambda).(0.025Tmean + 0.08)$, Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
Τ°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPme s	79,50	99,28	167,78	214,72	295,0 9	350,4 5	399,7 5	364,3 7	260,8 2	190,85	120,63	78,18
EVPcal	- 2,23	- 2,70	- 2,39	- 1,56	0,06	2,18	3,55	2,84	0,85	- 0,57	- 1,49	- 1,86
II.3. 11- Jensen et al.

ET0 = 0	.03523Rs(0.014Ta-0.37).	Nous donnes	les résultats	suivants :
$L_{10} = 0$,055251050	0,011100,577,	1 tous aonnes	ios resultuts	survants.

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	47,46	71,60	117,16	174,39	238,07	300,73	326,87	286,60	194,94	124,02	68,29	44,35

II.3. 12- Makkink (1975)

ET0 = 0,61. ($\Delta/(\Delta+\gamma)$.(Rs/ λ)-0,12, Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
Δ	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66
γ	0,06	0,06	0,06	0,06	0,06	0,07	0,07	0,07	0,07	0,06	0,06	0,06
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	62,07	87,41	116,93	147,13	169,61	183,31	181,29	162,31	124,93	93,99	66,40	53,94

II.3. 13- Oudin (2004)

ET0 = (Rs/λ) .(Tmean + 5)/100, Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	21,25	31,73	50,91	74,78	100,98	126,49	136,89	120,16	82,28	52,91	29,72	19,74

II.3. 14- Priestley et al.

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
Δ	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66
γ	0,06	0,06	0,06	0,06	0,06	0,07	0,07	0,07	0,07	0,06	0,06	0,06
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	50,93	69,37	90,87	112,88	129,36	139,46	138,03	124,19	96,86	74,25	54,11	45,02

ET0 = $0.38(\Delta/\Delta + \gamma)$.(Rs/ λ), Nous donnes les résultats suivants :

II.3. 15- Tabari and Talaee

ET0 = -0.642 + 0.174Rs + 0.0353Tmean, Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
Τ°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	30,12	55,81	94,13	132,70	167,65	197,01	208,11	190,13	143,94	99,59	53,58	27,08

II.3. 16- Turc (2004)

ET0 = 0,013(T/T+15).(Rs+50).(1+[(50-RH)/70)]), Nous donnes les résultats suivants :

Mois	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pa	97,91	97,64	97,43	97,15	97,27	97,31	97,21	97,30	97,41	97,55	97,68	97,94
λ	2,47	2,47	2,46	2,45	2,44	2,43	2,42	2,42	2,43	2,44	2,46	2,47
T°	11,88	13,50	17,66	21,80	26,59	31,72	35,15	34,18	29,39	23,84	17,22	12,74
Rs	2,88	3,92	5,12	6,33	7,22	7,74	7,63	6,87	5,39	4,15	3,05	2,55
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	54,89	59,47	68,68	76,08	82,75	88,27	91,04	89,68	84,30	77,23	66,51	56,85

Après avoir calculé l'évaporation selon les modèles précédents, nous allons maintenant traduire les résultats obtenus en graphiques comme suit :

31

Figure II.3: Les résultats graphiques obtenus par les modèles utilisés dans le barrage de Foum El Gherza entre la période de 2000-2020

Figure II.4. Corrélation entre les résultats des modèles choisis et l'évaporation mesurée

Les 18 modèles choisis ne sont pas toutes applicables sauf les modèles de: Imrak et al (2003)-1, Jensen & Haise 1, Jensen et al, Harregves 1975, Oudin, Priestley et a et Tabari and Talaee.

Après les estimations par les modèles choisis, nous constatons clairement leur efficacité ou non graphiquement. On a conclu que 07 modèles sont bons selon le coefficient de corrélation, le critère de Nash et le coefficient RSR pour ce barrage. Les modèles sont :

- Imrak et al (2003)-1
- Jensen &Haise(1963)
- Jensen et al
- Harregves 1975
- Oudin (2004)
- Priestley et al
- Tabari and Talaee

II.3. CONCLUSION

Dans ce chapitre, nous sommes concentrés sur le choix des bons modèles d'estimation de l'évaporation pour ce barrage. Vingt modèles ont été choisis et le résultats graphiques et statistiques montrent que seulement sept sont bons.

Les modèles choisis qui sont :

- Imrak et al (2003) -1
- Jensen &Haise(1963)
- Jensen et al
- Harregves 1975
- Oudin (2004)
- Priestley et al
- Tabari and Talaee

ÉLABORATION D'UN MODÈLE UNIQUE D'ESTIMATION DE L'ÉVAPORATION

III.1. Introduction

Pour estimer la quantité d'eau évaporée au niveau des plans d'eau (barrages et lacs). Nombreux chercheurs internationaux et peu Algériens ont proposé des nouveaux modèles numériques tels que : le modèle de Malika Fekih (2010) et celui Xu et singh (2000). Ces derniers exigent notamment des mesures en terrain à quelques paramètres qui sont indisponibles dans les bulletins et atlas climatologiques en Algérie.

Nous allons dans ce chapitre proposé un modèle numérique unique et adéquat afin d'estimer l'évaporation de Barrage Foum El Gherza, tout en utilisant des données climatologiques disponibles (Température et Rayon solaire). Nous signalons qu'une analyse statistique des données climatologiques est obligatoire afin d'élaborer le modèle. Ainsi, la validation de ce modèle est obtenue par la vérification du critère de Nash.

III.1.1. Nouveau modèle d'estimation de l'évaporation :

On appelle un nouveau modèle numérique de l'estimation de l'évaporation, tout modèle a pouvoir de représenter la liaison entre les variables explicatives sous forme une relation mathématique très simple d'appliquer (Régression linéaire simple ou multiple) afin de quantifier les pertes d'eau par processus d'évaporation au niveau de la retenue du barrage ou bien un lac (Riad, 2003).

Pour notre barrage, nous pouvons définir le nouveau modèle numérique (NMN) par l'équation suivante:

$Y = b0 + b1X1 + b2X2 + b3X3 + \dots etc. \dots (OMM, 1994)$

Où les X sont les variables connues (les données hydro-climatiques) avant l'émission de la prévision et Y la valeur de la variable à prévoir. Les b sont les coefficients de régression estimés d'après des valeurs observées de Y et X.

III.1.2. Analyse statistique des paramètres hydro-climatiques

Avant de commencer la modélisation numérique de l'évaporation, les données hydro climatiques collectées doivent subir des tests statistiques précis afin de pouvoir s'assurer de leur homogénéité et leur représentativité. Elles sont effectuées par l'utilisation de logiciel XLSTAT qui fonctionne avec tous les versions d'Excel sous les environnements Windows et Mac, il est représenté par l'interface suivante :

Figure III.1: L'interface de logiciel XLSTAT

Nous constatons d'après le tableau de matrice de corrélation que :

- 1. L'évaporation est strictement liée au Rayon solaire et Température (a vérifier).
- 2. Une corrélation d'ordre moyenne entre l'évaporation et les modèles choisis. (a vérifier).
- 3. Le meilleur modèle qui conduit à une très bonne corrélation et Jensen-Haise (1963) et Oudin (2004).

Comme meilleure modèle numérique de l'évaporation, nous avons choisi le modèle en fonction des paramètres suivants : La température (T) et le Rayon Solaire (Rs) qui nous donne une bonne corrélation entre eux (R^2 = 0,983). Le coefficient d'ajustement ou de corrélation est donné par :

Observations	12.000
Somme des poids	12.000
DDL	9.000
R ²	0.983
R ² ajusté	0.979
RSR	0.091
MCE	280.803
RMCE	16.757
MAPE	7.449
DW	2.512
Ср	3.000
AIC	70.200
SBC	71.654
PC	0.029

Tableau III 1: le coefficient d'a	ajustement ou de corrélation
-----------------------------------	------------------------------

	(Imrak et	(Jensen &	(Jensen et	(Harregyes) (Makkir		(Oudin)	(Priestley et	(Tabari and	EVPmes
	al-1)	Haise)	al)	(ITallegves)	(IVIAKKIIIK)	(Ouum)	al.)	Talaee)	(mm)
(Imrak et al-1)	1	0.979	0.978	0.968	0.899	0.977	0.899	0.988	0.981
(Jensen & Haise)	0.979	1	1.000	0.997	0.950	1.000	0.950	0.991	0.985
(Jensen et al)	0.978	1.000	1	0.997	0.951	1.000	0.951	0.991	0.985
(Harregves)	0.968	0.997	0.997	1	0.971	0.998	0.971	0.992	0.974
(Makkink)	0.899	0.950	0.951	0.971	1	0.954	1.000	0.955	0.901
(Oudin)	0.977	1.000	1.000	0.998	0.954	1	0.954	0.992	0.983
(Priestley et al.)	0.899	0.950	0.951	0.971	1.000	0.954	1	0.955	0.901
(Tabari and Talaee)	0.988	0.991	0.991	0.992	0.955	0.992	0.955	1	0.976
EVPmes (mm)	0.981	0.985	0.985	0.974	0.901	0.983	0.901	0.976	1

Tableau III.2: Matrice de corrélation des modelés choisis

Tableau III.3 : Analyse de la variance (EVP(mm))

Source	DDL	Somme des carrés	Moyenne des carrés	F	Pr > F
Modèle	3	142985.821	47661.940	161.005	< 0.0001
Erreur	8	2368.228	296.028		
Total corrigé	11	145354.049			

Tableau III.4 : Paramètre de modèle EVP

Source	Valeur	Erreur standard	t	Pr > t	Borne inférieure (95%)	Borne supérieure (95%)
Constante	65.604	32.421	2.023	0.078	-9.160	140.368
(Imrak et al-1)	0.204	0.279	0.733	0.485	-0.438	0.847
(Jensen & Haise)	1.611	0.649	2.483	0.038	0.115	3.107
(Jensen et al)	0.000	0.000				
(Harregves)	-1.793	0.985	-1.820	0.106	-4.065	0.478
(Makkink)	0.000	0.000				
(Oudin)	0.000	0.000				
(Priestley et al.)	0.000	0.000				

Élaboration d'un modèle d'estimation de l'évaporation

Source	Valeur	Erreur standard	t	Pr > t	Borne inférieure (95%)	Borne supérieure (95%)
(Imrak et al-1)	0.183	0.250	0.733	0.485	-0.393	0.758
(Jensen & Haise)	2.022	0.814	2.483	0.038	0.144	3.900
(Jensen et al)	0.000	0.000				
(Harregves)	-1.220	0.670	-1.820	0.106	-2.765	0.325
(Makkink)	0.000	0.000				
(Oudin)	0.000	0.000				
(Priestley et al.)	0.000	0.000				
(Tabari and Talaee)	0.000	0.000				

Tableau III.5 : Coefficients normalisés (EVPmes) :

Tableau III.6 : Prédictions et résidus (EVPmes) :

			Préd		Résidu	Ecart %-	Borne	Borne	Ecart %-	Borne	Borne
Obs	Poids	EVPmes	(EVDmac)	Résidu	otd	lo pród			type sui la		o5%
			(EVPINES)		stu.	la pieu.	93%	95%	pieu.	95%	93%
						Moyenne	Moyenne	Moyenne	(Observatio)	(Observation)	(Observation)
Obs1	1	79.499	76.699	2.800	0.163	11.156	50.974	102.424	20.506	29.413	123.985
Obs2	1	99.280	112.725	-13.446	-0.781	9.095	91.753	133.698	19.461	67.847	157.603
Obs3	1	167.783	153.877	13.906	0.808	9.003	133.116	174.638	19.419	109.098	198.657
Obs4	1	214.724	220.829	-6.106	-0.355	10.533	196.541	245.117	20.173	174.309	267.349
Obs5	1	295.092	303.449	-8.357	-0.486	6.859	287.633	319.265	18.522	260.737	346.161
Obs6	1	350.455	355.191	-4.736	-0.275	9.513	333.253	377.129	19.660	309.854	400.528
Obs7	1	399.752	392.889	6.863	0.399	11.337	366.747	419.032	20.605	345.375	440.404
Obs8	1	364.367	350.569	13.798	0.802	8.223	331.606	369.531	19.070	306.594	394.543
Obs9	1	260.820	284.171	-23.351	-1.357	13.027	254.130	314.212	21.581	234.405	333.937
Obs10	1	190.853	161.973	28.880	1.679	8.921	141.400	182.546	19.381	117.280	206.665
Obs11	1	120.625	116.074	4.552	0.265	8.832	95.707	136.440	19.340	71.476	160.671
Obs12	1	78.179	92.982	-14.803	-0.860	11.134	67.307	118.657	20.494	45.723	140.241

Figure III.2 : Présentation graphique de l'ajustement du modèle avec les données mesurées de l'évaporation

Equation du modèle numérique peut exprimer comme suit :

 $\mathbf{Z} = \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c}$

- x: Jensen-Haise (1963)
- **y:** Oudin (2004)

EVP (mm) = $83,91+7.23[0.035 \text{Rs}(0.014 \text{T}-0.37)]-21,60(\text{Rs}/\lambda)(0.025 \text{T}+0.08)$

Fig III.3 : Présentation graphique de l'ajustement du modèle avec les données mesurées de l'évaporation

Figure III. 4 : Présentation spatiale des l'évaporation calculée par le modèle et celui mesurées sur terrain

Figure III. 5 : Présentation spatiale des l'évaporation calculée par le modèle et celui mesurées sur terrain

Obs	Poids	EVPmes	Préd (EVPmes)	Résidu	Résidu std.	Ecart %- type sur la préd. Moyenne	Borne inférieure 95% Moyenne	Borne supérieure 95% Moyenne	Ecart %- type sur la préd. Obs	Borne inférieure 95% Obs	Borne supérieure 95% Obs
Obs1	1	79.499	82.433	-2.934	-0.175	7.745	64.913	99.953	18.460	40.673	124.193
Obs2	1	99.280	112.431	-13.151	-0.785	8.849	92.413	132.449	18.950	69.562	155.299
Obs3	1	167.783	151.320	16.464	0.982	8.083	133.035	169.604	18.605	109.233	193.407
Obs4	1	214.724	218.051	-3.328	-0.199	9.571	196.400	239.703	19.298	174.397	261.706
Obs5	1	295.092	302.872	-7.780	-0.464	6.636	287.861	317.884	18.023	262.101	343.644
Obs6	1	350.455	358.158	-7.703	-0.460	8.385	339.189	377.126	18.738	315.769	400.546
Obs7	1	399.752	397.181	2.572	0.153	9.455	375.793	418.568	19.240	353.656	440.705
Obs8	1	364.367	351.072	13.295	0.793	7.981	333.018	369.126	18.561	309.085	393.059
Obs9	1	260.820	277.292	-16.472	-0.983	8.798	257.389	297.194	18.926	234.477	320.106
Obs10	1	190.853	157.596	33.257	1.985	6.454	142.995	172.197	17.957	116.973	198.218
Obs11	1	120.625	115.864	4.761	0.284	8.597	96.416	135.312	18.834	73.259	158.469
Obs12	1	78.179	97.159	-18.981	-1.133	9.315	76.086	118.232	19.172	53.788	140.530

Tableau III.7: Prédictions et résidus (EVP calculée (mm))

III.1.3. Validation du modèle :

Notons tout d'abord que pour valider notre modèle nous devons calculer le critère de Nash (Nash Sutcliffe, 1970) donné par la formule suivante :

 $\mathbf{E} = \mathbf{1} \frac{\sum_{i=1}^{n} (EVPmesur - EVPmodel)^{2}}{\sum_{i=1}^{n} (EVPmesur - EVPmoy)^{2}} \quad (Nash Sutcliffe1970)$

- Si la valeur du critère de Nash est inférieure à 0.5, le modèle est rejeté
- Si la valeur du critère de Nash est proche de 1, le modèle est Excellent.

Le calcul de critère de Nash pour notre modèle est de 0.991 pour le barrage Foum El Gherza. Ce qui nous a permis de valider le modèle et de le comparer avec les valeurs de l'évaporation mesurée.

III.2. Résultats et discussion

Le calcul mensuel de l'évaporation a donnée des valeurs satisfaisantes par rapport aux autres modèles choisis. Les graphes présentent un décalage nous pensons en raison des erreurs de mesures liées au bac Colorado. La variation dans l'espace (Figure III.4), montre une forte homogénéisation des valeurs calculées et mesurées. Alors que la figure III.3, présente un très bon ajustement des deux variantes avec un coefficient de corrélation de 0.991.

Selon le graphe de la figure III.5, Nous constatons que les valeurs de l'évaporation calculée sont très proches aux valeurs de l'évaporation mesurée et la forme des courbes sont presque identique.

		I	,									
Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	62,32	105,39	173,20	256,24	306,23	351,02	409,26	353,56	265,91	179,58	133,12	89,49
Т	9,40	13,60	17,80	22,20	28,90	30,90	34,40	33,30	33,30	21,90	17,00	13,20
RS	3,17	4,52	5,13	6,59	6,96	7,88	7,70	6,88	4,98	3,71	2,70	2,34
EVPMod	82,70	112,95	152,07	219,22	304,44	360,05	399,23	352,85	278,58	158,24	116,24	97,42
Erreur %	32,70%	7,18%	-12,20%	-14,45%	-0,58%	2,57%	-2,45%	-0,20%	4,77%	-11,88%	-12,68%	8,87%

Tableau III.8: Résultats numériques obtenus par le nouveau modèle proposée

Tableau N° 01: Compte rendu (Année 2000)

Tableau N° 02: Compte rendu (Année 2001)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	85,35	113,89	242,44	250,00	332,69	402,41	445,77	385,63	252,34	200,20	97,21	71,20
Т	11,70	13,30	21,30	21,50	26,40	32,80	36,00	34,30	30,20	26,90	16,50	11,20
RS	2,42	4,08	5,11	6,48	7,16	8,16	7,55	6,97	5,02	4,08	2,42	2,10
EVPMod	91,99	108,13	181,23	209,46	280,86	395,99	413,58	368,16	253,92	199,54	110,91	89,22
Ecart %	7,79%	-5,06%	-25,25%	-16,22%	-15,58%	-1,59%	-7,22%	-4,53%	0,62%	-0,33%	14,09%	25,32%

Tableau N° 03: Compte rendu (Année 2002)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	58,32	102,55	212,55	218,21	311,20	339,97	335,78	371,12	265,33	167,94	120,18	94,54
Т	10,70	14,80	19,40	21,90	26,00	31,60	34,40	33,40	29,00	23,10	17,10	13,90
RS	2,71	3,89	5,16	6,37	7,20	7,97	7,64	6,54	5,32	3,88	2,36	2,04
EVPMod	88,57	116,51	166,02	211,54	277,16	372,60	396,77	340,66	253,37	169,36	112,56	98,01
Ecart %	51,87%	13,61%	-21,89%	-3,06%	-10,94%	9,60%	18,17%	-8,21%	-4,51%	0,84%	-6,35%	3,68%

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	101,61	83,72	131,77	200,37	290,00	330,79	412,45	392,12	282,10	195,05	107,66	76,56
Т	12,10	12,20	16,70	21,60	27,50	32,70	36,70	34,80	29,00	24,50	17,40	12,00
RS	2,13	3,60	4,73	6,16	7,16	7,97	7,29	7,00	5,23	3,19	2,57	1,89
EVPMod	92,41	98,85	138,23	204,28	294,01	387,38	410,90	375,31	250,50	161,57	116,37	91,14
Ecart %	-9,06%	18,07%	4,90%	1,95%	1,38%	17,11%	-0,38%	-4,29%	-11,20%	-17,17%	8,09%	19,04%

Tableau N° 04: Compte rendu (Année 2003)

Tableau N° 05: Compte rendu (Année 2004)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	77,38	114,75	176,36	202,44	219,21	305,48	369,09	353,27	268,67	194,64	91,89	63,35
Т	12,70	15,00	17,60	19,80	23,10	30,30	33,40	34,70	28,50	24,60	15,50	12,50
RS	2,58	3,70	4,68	5,88	7,18	7,53	7,33	6,37	5,10	3,40	2,73	1,98
EVPMod	96,71	116,12	144,55	181,35	242,03	340,19	371,68	348,00	242,09	167,25	109,90	93,09
Ecart %	25%	1%	-18%	-10%	10%	11%	1%	-1%	-10%	-14%	20%	47%

Tableau N° 06: Compte rendu (Année 2005)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	72,19	71,01	130,10	206,64	326,32	338,75	413,44	370,01	236,36	177,58	130,40	67,36
Т	10,20	10,80	17,90	22,00	28,00	31,90	36,00	33,80	28,50	24,10	23,00	10,90
RS	3,01	3,46	4,77	6,03	7,44	7,30	7,60	6,86	4,94	3,57	2,71	2,28
EVPMod	86,65	90,42	148,06	205,73	308,44	352,02	415,76	357,87	237,13	168,45	143,14	88,57
Ecart %	20%	27%	14%	0%	-5%	4%	1%	-3%	0%	-5%	10%	31%

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	97,12	79,50	184,31	255,83	314,41	398,00	404,27	371,08	253,98	227,89	108,49	64,83
Т	10,00	12,20	17,80	23,40	28,60	31,80	34,50	33,90	27,40	24,80	17,10	13,10
RS	2,16	3,16	5,06	6,08	6,59	7,61	7,50	7,38	5,33	4,21	2,70	2,02
EVPMod	85,18	97,03	151,14	220,83	289,41	362,12	392,31	379,88	239,42	188,50	116,68	95,25
Ecart %	-12%	22%	-18%	-14%	-8%	-9%	-3%	2%	-6%	-17%	8%	47%

 Tableau N° 07: Compte rendu (Année 2006)

Tableau N° 08: Compte rendu (Année 2007)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	74,43	111,83	171,63	187,74	307,29	388,82	396,98	365,60	244,58	211,78	142,57	96,79
Т	12,30	15,60	16,50	20,50	26,60	33,10	33,70	34,40	29,10	24,00	15,90	12,70
RS	2,59	3,24	4,79	5,41	7,15	7,68	7,89	6,50	5,54	4,23	3,37	2,87
EVPMod	95,08	115,29	137,35	179,80	282,97	381,53	397,67	350,09	261,31	183,38	118,20	98,15
Ecart %	28%	3%	-20%	-4%	-8%	-2%	0%	-4%	7%	-13%	-17%	1%

Tableau N° 09: Compte rendu (Année 2008)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	82,15	104,66	188,45	257,56	309,12	338,49	418,24	339,84	278,40	140,04	115,79	53,05
Т	12,10	13,90	17,80	22,60	26,60	30,80	36,20	34,40	29,60	22,50	15,30	10,90
RS	3,30	4,15	5,59	6,81	7,43	7,86	7,87	7,12	5,36	4,00	3,46	2,72
EVPMod	97,07	112,60	158,18	228,24	290,77	358,03	430,23	375,48	260,04	168,02	115,73	89,47
Ecart %	18%	8%	-16%	-11%	-6%	6%	3%	10%	-7%	20%	0%	69%

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	53,17	82,43	119,43	150,22	249,32	362,12	424,56	392,84	211,24	174,72	118,74	75,93
Т	12,00	12,10	16,20	18,70	26,30	32,10	36,00	34,80	27,10	23,00	16,90	13,20
RS	2,95	4,33	5,66	6,61	7,79	7,84	7,87	6,90	5,54	4,79	3,50	2,88
EVPMod	95,20	101,18	144,28	181,49	296,89	374,49	427,55	371,15	242,77	188,60	125,25	100,54
Ecart %	79%	23%	21%	21%	19%	3%	1%	-6%	15%	8%	5%	32%

 Tableau N° 10: Compte rendu (Année 2009)

Tableau N° 11: Compte rendu (Année 2010)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	83,42	96,28	171,68	189,36	264,24	353,30	412,33	358,99	256,81	193,74	119,25	101,52
Т	12,60	14,60	18,30	22,10	24,40	31,10	35,20	34,40	28,70	22,50	16,60	12,40
RS	3,21	3,92	5,30	6,55	7,17	7,80	7,93	7,08	5,89	4,58	3,44	2,88
EVPMod	99,32	115,48	158,67	217,31	257,27	359,87	419,40	373,84	268,57	180,22	122,85	96,80
Ecart %	19%	20%	-8%	15%	-3%	2%	2%	4%	5%	-7%	3%	-5%

Tableau N° 12: Compte rendu (Année 2011)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	77,30	104,20	125,92	176,45	220,86	294,99	377,99	350,80	274,69	162,45	146,58	86,83
Т	12,1	13,2	16	22,1	24,9	29,8	34,7	34,1	30,3	22,4	17,4	13,4
RS	3,17	3,99	5,36	6,63	7,24	7,92	7,85	7,26	5,82	4,63	3,44	2,96
EVPMod	96,55	106,95	139,32	218,94	264,97	346,81	409,36	377,52	281,99	180,50	127,35	101,96
Ecart %	25%	3%	11%	24%	20%	18%	8%	8%	3%	11%	-13%	17%

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	80,93	88,83	149,31	217,89	298,92	419,07	462,53	428,88	310,49	213,20	110,58	91,68
Т	12,00	10,70	17,40	21,40	27,10	34,30	36,50	35,70	29,80	24,50	18,10	13,00
RS	3,30	4,35	5,32	6,48	7,67	7,98	7,92	7,20	5,81	4,37	3,37	2,93
EVPMod	96,54	91,39	151,10	208,39	303,85	409,35	436,47	394,63	276,77	190,30	130,34	99,88
Ecart %	19%	3%	1%	-4%	2%	-2%	-6%	-8%	-11%	-11%	18%	9%

 Tableau N° 13: Compte rendu (Année 2012)

Tableau N° 14: Compte rendu (Année 2013)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	84,01	114,05	195,03	236,78	379,66	342,57	371,57	327,77	226,28	200,96	141,66	70,11
Т	12,70	12,30	18,40	22,20	25,90	30,20	34,50	32,40	29,80	26,10	17,30	12,20
RS	3,18	4,11	4,92	6,18	7,10	7,70	7,38	6,92	5,47	4,46	3,45	2,74
EVPMod	99,69	101,64	154,12	210,80	273,29	344,68	387,38	343,90	265,49	204,36	126,92	95,28
Ecart %	19%	-11%	-21%	-11%	-28%	1%	4%	5%	17%	2%	-10%	36%

Tableau N° 15: Compte rendu (Année 2014)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	80,91	108,47	142,95	224,48	292,55	325,63	376,30	369,80	280,02	231,36	134,13	107,26
Т	12,70	14,90	16,30	22,90	26,90	30,60	34,50	35,10	31,20	25,30	18,50	13,00
RS	3,25	4,27	5,04	6,55	6,97	7,28	7,33	6,87	5,32	4,57	3,14	2,82
EVPMod	100,04	120,39	138,49	225,99	281,45	335,35	385,32	373,39	273,03	201,24	129,23	99,28
Ecart %	24%	11%	-3%	1%	-4%	3%	2%	1%	-2%	-13%	-4%	-7%

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	83,64	95,82	150,02	217,16	326,09	338,10	379,23	341,45	268,16	165,00	115,56	63,21
Т	11,90	12,30	16,60	22,50	28,10	31,30	34,50	34,40	29,50	23,60	17,60	12,20
RS	3,24	4,15	5,29	6,48	7,11	7,61	7,67	6,53	5,33	4,31	3,46	2,94
EVPMod	95,78	101,81	143,79	220,18	299,67	355,71	399,30	351,32	258,16	182,40	128,74	96,11
Ecart %	15%	6%	-4%	1%	-8%	5%	5%	3%	-4%	11%	11%	52%

 Tableau N° 16: Compte rendu (Année 2015)
 Image: Compte rendu (Année 2015)

Tableau N° 17: Compte rendu (Année 2016)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	101,84	126,87	204,73	220,98	311,31	347,56	395,20	331,21	262,36	209,92	128,47	64,05
Т	13,30	15,10	17,40	23,00	26,80	31,90	34,60	33,20	29,00	25,60	17,20	14,30
RS	2,90	3,93	5,12	6,33	7,21	7,76	7,65	6,90	5,38	4,12	3,05	2,52
EVPMod	101,12	118,79	148,57	222,28	286,98	368,75	399,57	352,42	255,12	191,85	121,45	103,01
Ecart %	-1%	-6%	-27%	1%	-8%	6%	1%	6%	-3%	-9%	-5%	61%

Tableau N° 18: Compte rendu (Année 2017)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
EVPmes	72,33	87,07	154,79	197,48	251,68	361,40	403,24	340,00	243,77	183,46	119,26	76,34
Т	10,90	15,40	19,30	21,90	28,70	32,50	35,00	34,40	28,00	22,50	16,10	11,90
RS	2,95	4,03	5,03	6,28	7,27	7,70	7,63	6,82	5,39	4,20	3,21	2,65
EVPMod	89,93	121,67	163,18	209,77	311,95	374,65	404,02	363,09	246,60	172,24	117,65	93,61
Ecart %	24%	40%	5%	6%	24%	4%	0%	7%	1%	-6%	-1%	23%

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	74,26	98,26	169,71	224,81	272,00	332,50	389,17	366,17	262,40	188,81	114,55	68,41
Т	13,70	12,20	17,50	22,40	25,00	30,60	37,10	31,80	30,40	22,10	16,70	13,20
RS	2,68	3,75	5,21	6,48	7,08	7,68	7,77	6,69	5,35	4,51	3,21	2,55
EVPMod	101,55	99,47	150,54	219,16	262,20	349,32	437,79	328,46	267,04	175,75	120,79	98,65
Ecart %	37%	1%	-11%	-3%	-4%	5%	12%	-10%	2%	-7%	5%	44%

Tableau N° 19: Compte rendu (Année 2018)

Tableau N° 20: Compte rendu (Année 2019)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	83,78	98,03	171,63	220,53	284,91	341,97	398,32	383,08	281,46	197,83	117,37	77,92
Т	12,10	13,10	17,10	21,00	24,50	34,00	35,70	35,10	29,90	24,30	15,80	15,00
RS	2,67	3,78	5,09	6,15	7,49	7,62	7,41	6,88	5,55	4,25	2,88	2,58
EVPMod	94,58	105,14	145,67	197,97	266,28	390,94	403,67	373,93	269,04	185,88	112,71	106,36
Ecart %	13%	7%	-15%	-10%	-7%	14%	1%	-2%	-4%	-6%	-4%	37%

Tableau N° 21: Compte rendu (Année 2020)

Mois	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
EVPmes	83,01	97,25	157,46	198,03	328,93	346,58	399,05	358,48	251,87	191,75	119,69	81,31
Т	12,20	16,20	17,60	22,10	28,10	31,80	34,60	35,30	28,80	22,30	18,70	13,30
RS	2,98	3,92	5,07	6,36	7,17	7,65	7,51	6,68	5,47	4,16	2,81	2,78
EVPMod	96,27	125,73	149,56	213,52	301,63	363,70	394,19	367,68	256,42	170,01	125,39	100,40
Ecart %	16%	29%	-5%	8%	-8%	5%	-1%	3%	2%	-11%	5%	23%

Clé du Graphe : La courbe Rouge est d'évaporation calculé par le modèle choisi en (mm), la courbe Bleu d'évaporation mesurée. (X) ligne des mois, (Y) les valeurs de l'évaporation (mm).

64

Suite Figure III.6 : Présentation graphique de l'évaporation calculée par le et celle mesurée par le bac

Clé du Graphe : La courbe Rouge est d'évaporation calculé par le modèle choisi en (mm), la courbe Bleu d'évaporation mesurée. (X) ligne des mois, (Y) les valeurs de l'évaporation (mm).

Suite Figure III.6 : Présentation graphique de l'évaporation calculée par le et celle mesurée par le bac

Clé du Graphe : La courbe Rouge est d'évaporation calculé par le modèle choisi en (mm), la courbe Bleu d'évaporation mesurée. (X) ligne des mois,(Y) les valeurs de l'évaporation (mm).

Figure III.7 : Variation l'évaporation inter- annuelle par le nouveau modèle et l'évaporation de bac durant la période (2000-2020). Foum El Gherza

Année	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
EVPmes	218,45	239,93	216,47	217,02	203,04	211,68	229,98	225,00	218,82	201,23	216,74
EVPmod	219,50	225,25	216,93	218,41	204,41	216,85	218,15	216,73	223,65	220,78	222,47
R ²	0,987	0,966	0,922	0,985	0,949	0,992	0,969	0,977	0,960	0,983	0,987
NASH	0,993	0,983	0,960	0,992	0,974	0,996	0,984	0,988	0,980	0,991	0,993
RSR	0,081	0,131	0,199	0,087	0,161	0,063	0,125	0,108	0,142	0,092	0,081

Tableau III.9 : Le critère de l	Nash de Modèle numériq	le proposé dans le barrage	E Foum El Gherza (2000-2020)
i doledd illio i De entere de l	i tubil de l'ilodole ildillerig	to propose duils to buildge	

Année	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
EVPmes	199,93	239,36	224,20	222,82	211,95	225,38	207,57	213,42	221,40	217,79
EVPmod	221,02	232,42	217,30	221,93	219,41	222,49	222,36	217,56	221,01	222,04
R ²	0,975	0,990	0,878	0,985	0,981	0,950	0,973	0,956	0,965	0,980
NASH	0,987	0,995	0,937	0,992	0,990	0,975	0,986	0,978	0,982	0,990
RSR	0,112	0,071	0,251	0,087	0,098	0,159	0,117	0,149	0,133	0,100

Le modèle proposé applicable dans le barrage de Foum El Gherza selon les résultats de calcules l'évaporation, le critère de Nash et SRS

III.3. CONCLUSION

Nous pouvons conclure après une analyse statistique de modèle numérique et sa comparaison avec les valeurs mesurées que le modèle est simple nécessite que deux modèles (Jensen-Haise, Oudin) pour son application. Finalement, on suggère l'utilisation de ce modèle pour estimer l'évaporation au niveau de barrage Foum el Gherza.

Et on trouve aussi que les paramètres suivant NASH et RSR respectivement pour toutes les années sont valables et presque tente vers 1 pour les Nash bon résultat et pour les paramètres RSR toute inférieure à 0.5 et presque proche 0.063 au minimum et 0.251 au maximum confondu au l'année 2013 on va trouver la valeur de l'évaporation éloignée par rapport à l'évaporation mesurée à cause de plusieurs facteur déterminés seulement et pour toute l'année on remarque les résultats trouvés par notre modèle proposé vraiment bonne et voilà la lecture de notre résultats.

CHAPITRE IV

ÉTUDE COMPARATIVE ET PERFORMANCE DES RÉSULTATS OBTENUS PAR LE MODÈLE PROPOSÈ ET LES MODÈLES CHOISIS

IV.1 Introduction

Ce chapitre est consacré à une comparaison entre les sept modèles choisis et notre modèle proposé. Nous allons établir un graphe final ou tous les modèles sont tracés. Le calcul des erreurs est une nécessité afin de confirmer l'efficacité des modèles choisis aussi le modèle proposé.

IV.1.1. Présentation graphique des modèles choisis et proposé

Nous rappelons que les sept modèles donnant des bons résultats sont :

- Imrak et al (2003) -1
- Jensen & Haise (1963)
- Jensen et al
- Harregves 1975
- Oudin (2004)
- Priestley et al
- Tabari and Talaee

Figure IV.1: Présentation graphique des modèles-Barrage Foum El Gherza-(2000-2020)

CHAPITRE IV Etude comparative des résultats obtenus par le modèle proposé et le modèle choisi

D'après les figures IV.1, nous remarquons clairement que :

 Les tracés de la courbe de l'évaporation des modèles suivants : Imrak et al (2003), Jensen-Haise (1963), sont très prochede celle de l'évaporation mesurée.

À la conséquence, on conclut que les modèles qui peuvent être utilisés dans l'estimation de ce barrage sont : Imrak et al (2003), Jensen-Haise (1963).

IV.2. Calcul des erreurs des modèles d'estimation :

Pour juger de l'efficacité des modèles numériques choisis et du modèle que nous avons proposés, nous devons calculer les erreurs numériques au cours de leur application. D'où l'erreur est calculée par la relation suivante :

$$\mp \Delta \mathbf{E} = \frac{(\mathbf{E}\mathbf{c} - \mathbf{E}\mathbf{m})}{\mathbf{E}\mathbf{c}} \times \mathbf{100}$$

Les résultats des erreurscalculées pour chaque modèle numérique sont regroupés dans les tableaux ci-dessous :

IV.1. Calcul des Erreurs Pour Chaque modèle

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
EVPmes	79.50	99.28	167.78	214.72	295.09	350.45	399.75	364.37	260.82	190.85	120.63	78.18
EVPcal	65.22	122.78	168.43	229.47	292.59	324.46	351.42	328.84	298.27	180.56	122.50	84.29
E%	-18%	24%	0%	7%	-1%	-7%	-12%	-10%	14%	-5%	2%	8%

Tableau N° 01 : Erreurs obtenues par le modèle de Imrak et al-1 (2003) Piéride : (2000-2020)

Tableau N° 02 : Erreurs obtenues par le modèle de Jensen & Haise (1963) Piéride : (2000-2020)

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
EVPmes	79.50	99.28	167.78	214.72	295.09	350.45	399.75	364.37	260.82	190.85	120.63	78.18
EVPcal	59.25	113.89	162.90	254.91	343.43	414.12	448.14	388.18	280.98	141.75	82.35	57.51
E%	-25%	15%	-3%	19%	16%	18%	12%	7%	8%	-26%	-32%	-26%

Tableau N° 03 : Erreurs obtenues par le modèle de Harregves (1975) Piéride : (2000-2020)

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	54,47	90,02	116,31	168,59	209,23	247,51	260,12	227,28	164,51	94,17	59,79	45,99
E%	-31%	-9%	-31%	-21%	-29%	-29%	-35%	-38%	-37%	-51%	-50%	-41%

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,62	78,17
EVPcal	175,10	227,67	257,14	313,64	341,84	375,52	378,59	350,27	290,96	223,00	179,31	158,63
E%	120%	129%	53%	46%	16%	7%	-5%	-4%	12%	17%	49%	103%

Tableau N° 04 : Erreurs obtenues par le modèle de Irmak-Allen(2003) Piéride : (2000-2020)

Tableau N° 05 : Erreurs obtenues par le modèle de Makkink(1975) Piéride : (2000-2020)

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
EVPmes	79,5	99,28	167,78	214,72	295,09	350,45	399,75	364,36	260,82	190,85	120,63	78,18
EVPcal	68,79	101,89	117,21	153,5	163,68	186,73	182,93	162,43	115,39	82,94	57,90	48,92
Ε%	-13%	3%	-30%	-29%	-45%	-47%	-54%	-55%	-56%	-57%	-52%	-37%

Tableau N° 06 : Erreurs obtenues par le modèle de Oudin(2004) Piéride : (2000-2020)

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
EVPmes	79,5	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	19,89	36,78	51,37	79,06	104,74	125,83	135,40	117,48	85,04	44,01	26,07	18,62
Ε%	-75%	-63%	-69%	-63%	-65%	-64%	-66%	-68%	-67%	-77%	-78%	-76%

74

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal	55,90	80,02	91,18	117,63	125,04	141,85	139,08	124,14	89,86	66,20	47,95	41,41
E%	-30%	-19%	-46%	-45%	-58%	-60%	-65%	-66%	-66%	-65%	-60%	-47%

Tableau N° 07 : Erreurs obtenues par le modèle de Priestley et alPiéride : (2000-2020)

Tableau N° 07 : Erreurs obtenues par le modèle de Tabari and TalaeePiéride : (2000-2020)

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Déc
EVPmes	79,50	99,28	167,78	214,72	295,09	350,45	399,75	364,37	260,82	190,85	120,63	78,18
EVPcal (Tabari and Talaee)	26,07	67,45	94,93	139,14	171,63	196,55	206,51	186,91	151,20	83,87	46,21	24,96
E%	-67%	-32%	-43%	-35%	-42%	-44%	-48%	-49%	-42%	-56%	-62%	-68%

CHAPITRE IV Etude comparative des résultats obtenus par le modèle proposé et le modèle choisi

Après avoir présenté les erreurs de calcul pour chaque modèle numérique utilisé dans cette étude, nous avons trouvé les résultats suivants ;

1. Les erreurs de calcul sont très grandes concernant les modèles suivants : les modèles de Jensen et al; Harregves 1975; Oudin (2004); Priestley et al et enfin modèle Tabari and Talaee

Les erreurs de calcul sont faibles concernant les modèles suivants :Imrak et al (2003) -1,
Jensen & Haise (1963) et celui que nous avons proposé présente des erreurs inférieures à 24 %.
C'est à dire, ces derniers donnent une bonne estimation de l'évaporation de notre barrage.

VI.2 Conclusion

Ce chapitre présente la comparaison des valeurs d'évaporation calculées grâce au nouveau modèle proposé avec ceux calculés par les modèles choisis. Nous confirmons définitivement l'efficacité de notre modèle qui présente des erreurs inférieures à 24%. Les résultats obtenus par les deux modèles choisis sont : Imrak et al (2003) -1 et Jensen & Haise (1963) confirment la possibilité de leur application afin d'estimer l'évaporation du barrage.

En perspective, nous pensons que notre modèle proposé a contribué à faciliter le processus d'estimation de l'évaporation au niveau du barrage de Foum El- Ghorza qui se situe dans une région semi-aride et permet de combler les manques de données d'évaporation dans les séries enregistrées par l'ANBT.

CONCLUSION GÉNÉRALE

CONCLUSION GÉNÉRALE

L'objectif principal de cette étude, était l'élaboration d'un modèle numérique simple et adéquat pour une bonne estimation de l'évaporation qui est considérée comme un problème majeur au niveau du barrage de Foum El-Gherza (Biskra) tout en utilisant quelques données hydroclimatiques comme des paramètres d'entrée pour le modèle proposé.

Pour le premier chapitre, nous avons présenté tout d'abord la climatologie du barrage de Foum El-Ghorza situé dans une région semi-aride (Biskra) à l'est d'Algérie. Ensuite, nous avons expliqué les facteurs influant sur l'évaporation qui est : la température, la vitesse du vent, l'humidité relative, l'insolation (rayon solaire). etc. Tout cela, pour comprendre quand le phénomène d'évaporation ce produit et de confirmer le type climatique de notre région d'étude.

Le deuxième chapitre, qui traite l'application numérique de certains modèles choisis tels que : les deux modèles de Abtew (1996), Boyed 1985, Caprio, Hargreaves (1975, Irmak-Allen 2003, Irmak et al. (2003), Jensen & Haise (1963), Jensen et al., Makkink 1975, McGuinness et al., Oudin (2004), Priestley et al., Tabari and Talaee (2011) et Turc (1961).

Et en employant des données climatologiques collectées pour estimer l'évaporation de notre barrage en utilisant seulement la température (T) et le rayon solaire (Rs).

Nos calculs illustrent que peu de modèles numériques qui sont : Imrak et al (2003)-1, Jensen & Haise 1, Jensen et al, Harregves 1975, Oudin, Priestley et a et Tabari and Talaee donnent une bonne convergence avec les mesures directes de l'évaporation où le coefficient de corrélation est très élevé (R2 = 0.983).

Le troisième chapitre est consacré à l'élaboration d'un modèle numérique afin d'estimer l'évaporation du barrage sur la base des analyses statistiques des données hydro-climatiques. Ces analyses ont été effectuées par un programme simple appelé XLSTAT. Nos résultats montrent que les facteurs influent sur l'évaporation sont bien la température et le rayon solaire avec une bonne corrélation est de 0,991. La combinaison des deux paramètres à conduit à un très bon modèle pour une estimation précise de l'évaporation. Afin de confirmer l'efficacité de notre modèle, le critère de Nash et RSR ont été calculés et leurs valeurs sont respectivement 0,991 et 0,091 qui conclut que notre modèle est excellent.

Dans le dernier chapitre, nous avons mené une étude comparative entre les modèles sélectionnés et notre modèle afin de répondre à la question posée : le nouveau modèle élaboré est – il efficace ou non ?

Cette comparaison montre que le modèle élaboré a une bonne concordance avec les valeurs d'évaporation mesurées par le bac Colorado, ce qui présente des erreurs ne dépasse 24%. Ainsi que le modèle de Imrak et al. (2003) donne une bonne estimation d'évaporation avec une erreur moyenne inférieure à 13%, sans oublier le modèle de Jensen & Haise (1963) qui a fourni des valeurs acceptables à l'échelle interannuelle (2000-2020) avec une erreur moyenne atteinte de 32%, alors que les autres modèles choisis présentent des valeurs des erreurs considérables. Ces résultats confirment définitivement l'efficacité de notre modèle et son pouvoir d'appliquer.

En perspective, nous suggérons l'utilisation de ce modèle pour estimer l'évaporation mensuelle du barrage Foum- El Gherza qui donne des valeurs plus précises pendant toute l'année, sans faire appel à des modèles internationaux.

<u>RÉFÉRENCES BIBLIOGRAPHIQUES</u>

Abtew, W. Evapotranspiration measurements and modeling for three wetland systems in south Florida.J. Am. Water Resour. Assoc. 1996, 32, 465–473.

Caprio, J.M. The solar thermal unit concept in problems related to plant development and potential evapotranspiration. In Phenology and Seasonality Modeling; Springer: Berlin/Heidelberg, Germany, 1974;pp. 353–364.

McGuinness, J.L.Bordne, E.F. A Comparison of Lysimeter-Derived Potential Evapotranspiration withComputedValues; U.S. Department of Agriculture: Washington, DC, USA, 1972.

Jones, J.W.; Ritchie, J.T. Crop growth models. In Management of Farm Irrigation Systems; Hoffman, G.J., Howel, T.A., Solomon, K.H., Eds.; ASAE: Washington, DC, USA, 1990; pp. 63–69.

Priestley, C.H.B.; Taylor, R. On the assessment of surface heat flux and evaporation using large-scaleparameters. Mon. Weather Rev. 1972, 100, 81–92.

Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation. Proc. Am. Soc. Civ. Eng. J.Irrig. Drain. Div. 1963, 89, 15–41

Makkink, G. Testing the penman formula by means of lysimeters. J. Inst. Water Eng. 1957, 11, 277–288.

Turc, L. Water Requirements Assessment of Irrigation, Potential Evapotranspiration: Simplified and Updated ClimaticFormula; Annales Agronomiques: Paris, France, 1961; pp. 13–49.

Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985,1, 96–99.

Tabari, H.; Grismer, M.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods underhumid conditions. Irrig. Sci. 2011, 31, 107–117.

Turc L. 1961. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy 12 : 13–49.

Alazard, M, Leduc, C, Travi.Y., Boulet, G.,etsalem,A.B.(2015). Estimation evaporation in semi-arid areas facing data scarcity: Example of the El Haouareb dam (Merguellil catchment, central Tunisia). Journal of Hydrology : Régional Studies, vol,3,265-284.

Aldomany, M. (2017). L'évaporation dans le bilan hydrologique des étangs du centre ouest de la France (Brenne et Limousin). Thèse doctorat. Université d'Orlens. 278.

ANBT. Agence National des Barrages et Transferts, Biskra, Algérie.

André, Musy. (2005).La mesure hydrologique, Chapitre 4,dans Hydrologie Générale Section SIE et GC 4 ème semestre. Ecole Polytechnique Fédérale (EPFL).Editeur,P 1-21.

NEDJIMA Ridha (2019). Élaboration d'un modèle numérique pour l'estimation de l'évaporation à partir des données climatiques limitées : cas du barrage réservoir Foum El –Guiss- khenchela. Mémoire master, Université Echahide Hamma Lakhdar, d'El-Oued, Algérie.

MIHI Nesrine & OUBZIZ Afaf (2019). Elaboration d'un modèle numérique pour l'estimation de l'évaporation a partir des données climatique limitées: cas deux barrage réservoirs Foum El Gherza et Fontaines des Gazelles-Biskra. Mémoire master, Université Echahide Hamma Lakhdar, d'El-Oued, Algérie.

Ben Cherouda, A. & Djaballah, H. (2018). Nouveau modèle numérique d'estimation de l'évaporation du barrage réservoir Djorf-Torba,Bechar. Mémoire master, UniversitéEchahide Hamma Lakhdar, d'El-Oued, Algérie.

Benzaghtaet al. (2012). Prediction of evaporation in tropical climat using artificial neural network and climate-based models, Academic Journels, Vol.7(36),3139p.

BenhaddadDali, (2015). Evolution des grands barrages dans l'est Algérien : Quel devenir ? Mémoire Magister. Université Abderrahmane Mira, Bejaia, Algérie.

Benis,S. (2009).« Hydraulique et hydrologie »,2ème édition (Revue et Augmentée),presse de l'université du Québec. Québec, Canada.

Boutoutaou D.(2011).Notion sur l'évaporation des plans d'eau (Barrage, Lac, Cours d'eau, Chott, Sebkha, etc) en Algérie. Laboratoire d'Exploitation et Valorisation desRessources Naturelles en Zones Arides. Université Kasdi Merbah Ouargla,296p et299p.

Guezel, Y. &Miloudi, T. (2018). Nouveau modèle numérique d'estimation du taux d'évaporation du barrage réservoir –Brizina-El-Bayadh. Mémoire Master. Université EchahideHamma Lakhdar, d'El-Oued, Algérie.

Graie-GT Autosurveillance-sous-groupe Modelisation 2018. Critères et indicateurs d'autoévaluation des modèles, Document de Travail, version1, p6 et p 7.

M. Majidi et al. (2015). Estimating Evaporation from Lakes and Reservoirs Under Limited Data Condition in a Semi-Arid Region. Journal Springer Science et Business Dordrecht. P3716.

Oulhaci, D. (2015). Ruissellement Inter- Annuel En Algérie Septentrionale (Relation entre, Ruissellement Pluie et Evaporation. ThèseDoctorat. Université Kasdi Merbah Ouargla. Algérie.

OMM. (1994). Guides des Pratiques Hydrologiques Acquisition et Traitement des Données, Analyses, Prévision et Autres Applications. Cinquième édition, Organisation Météologique mondiale, OMM-N°168

Remini,B. (2005).L'évaporation des lacs de barrages dans les régions arides et semiaride :Exemple Algériens. Larhyss Journal,1112-3680.

Riad, S. (2003). Typologie et Analyse hydrologique des eaux superficielles à partir de quelque bassins versants représentatifs du Maroc. Thèse Doctorat. Université Ibnou Zohra. Agadir, Maroc.

Singh, V. & Xu, C.Y. (1997). Evaluation and generalization of 13 mass- Tansfer equations for determining free Water evaporation. Hydrological Processes, Vol.11,311-323.313p et 316.

Sahraoui, B. (2016). Diagnostic et réhabilitation d'un forage du complexe Terminal et ses équipements cas du barrage. Mémoire Master. Université de Echahide Hamma Lakhdar.El-Oued.Algérie,14p.

Tebbi, F.Z. (2014). Modélisation de la régularisation des barrages dans la région des Aurès. Thèse Doctorat. Université Haj Lakhdar Batna. Batna. Algérie.50p

Vachala, S. (2008). Evaporation sur les retenues EDF du sud de la France. Mémoire Master. Université Pierre et Mrice Curie. Paris. France.

World Meteorological Organization, 1966. Measurement and estimation of evaporation and evapotranspiration, Technical Note 83. Geneva, Switzerland, 121 pp.

Tebbi, F-Z.« Modélisation de la régularisation des barrages dans la région des Aurès »Thèse de doctorat, Université Hadj Lakhdar Batna (2014).

Manoj J. Gundalia et al. Int. Journal of Engineering Research and Applications. (2013). page 69-70.

LABDI-N. « Impact du barrage de Foum El Gherza sur le développement de l'agricultureen irrigué dans le périmètre de Sidi Okba (Biskra) » diplôme de Magister, UNIVERSITE MOHAMED KHIDER BISKRA. (2016).

Mohammad Aldomany. L'évaporation dans le bilan hydrologique des étangs du CentreRéférence bibliographieOuest de la France (Brenne et Limousin). Géographie. Université d'Orléans,2017. Français.

J.P.Brunel -B. Bouron: évaporation des nappes d'eau libre en Afrique sahélienne et tropicale. Octobre (1992).

Site web:<u>www.wunderground.com</u>.