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ABSTRACT

This paper, presents a Direct Field-Oriented Control (DFOC) of doubly fed induction

motor (DFIM) with a fuzzy sliding mode controller (FSMC). Our aim is to make the

speed control robust to parameter variations. The variation of motor parameters during

operation degrades the performance of the controllers. The use of the nonlinear fuzzy

sliding mode method provides very good performance for motor operation and

robustness of the control law despite the external/internal perturbations. The chattering

effects is eliminated by a particular function "sat" that presents a serious problem to

applications of variable structure systems. The fuzzy sliding mode controller is designed

in order to improve the control performances and to reduce the chattering phenomenon.

In this technique the saturation function is replaced by a fuzzy inference system to

smooth the control action. The proposed scheme gives fast dynamic response with no

overshoot and zero static error. To show the validity and the effectiveness of the control

method, simulation results are performed for the speed control of a doubly fed induction

motor. Simulation results showed that improvement made by our approach compared to

conventional sliding mode control (SMC) with the presence of variations of the

parameters of the motor, in particular the face of variation of moment of inertia and

disturbances of load torque. The results show that the FSMC and SMC are robust

against internal and external perturbations, but the FSMC is superior to SMC in

eliminating chattering phenomena and response time.
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1. INTRODUCTION

Known since 1899 [1], [2], the doubly fed induction machine (DFIM) is an

asynchronous machine with wound rotor which can be supplied even time by the stator

and the rotor external source voltages. This solution is very attractive for the variable

speed applications such as the electric vehicle and the electrical energy production [1],

[2]. Consequently, it covers all powers ranges. Obviously, the variable speed and the

performances ranges depend of the application nature. With DFIM, it can possible to

modulate power flow into and out the rotor winding in order to have, at the same time, a

variable speed in the characterized super-synchronous or sub-synchronous modes in

motor or in generator regimes. Two modes can be associated to slip power recovery:

sub–synchronous motoring and super–synchronous generating operations. In general,

while the rotor is fed through a cycloconverter, the power range can attain the MW

order which presents the size power often reserved to the synchronous machines [1],

[2].

The DFIM has some distinct advantages compared to the conventional squirrel-cage

machine. The DFIM can be fed and controlled stator or rotor by various possible

combinations. Indeed, the input–commands are done by means of four precise degrees

of control freedom relatively to the squirrel cage induction machine where its control

appears quite simpler. The flux orientation strategy can transform the non linear and

coupled DFIM-mathematical model to a linear model conducting to one attractive

solution as well as under generating or motoring operations [1], [2].

Several methods of control are used to control the induction motor among which the

vector control or field orientation control that allows a decoupling between the torque

and the flux, in order to obtain an independent control of torque and the flux like DC

motors [3].

The overall performance of field oriented controlled induction motor drive systems is

directly related to the performance of current control. Therefore, decoupling the control

scheme is required by compensation of the coupling effect between q-axis and d-axis

current dynamics [3].
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With the field orientation control (FOC) method, induction machine drives are

becoming a major candidate in high-performance motion control applications, where

servo quality operation is required. Fast transient response is made possible by

decoupled torque and flux control [4].

Sliding mode theory, stemmed from the variable structure control family, has been used

for the induction motor drive for a long time. It has for long been known for its

capabilities in accounting for modeling imprecision and bounded disturbances. It

achieves robust control by adding a discontinuous control signal across the sliding

surface, satisfying the sliding condition. Nevertheless, this type of control has an

essential drawback, which is the chattering phenomenon caused from the discontinuous

control action. To alleviate the chattering phenomenon, the idea of boundary layer is

used to improve it. It is called a modified controller. In this method, the control action

was smoothed such that the chattering phenomenon can be decreased [5].

Fuzzy logic control is a technique of incorporating expert knowledge in designing a

controller. Past research of universal approximation theorem shown that any nonlinear

function over a compact set with arbitrary accuracy can be approximated by a fuzzy

system [5]. Fuzzy logic has proven to be a potent tool in the sliding mode control of

time-invariant linear systems as well as time-varying nonlinear systems. It provides

methods for formulating linguist rules from expert knowledge and is able to

approximate any real continuous system to arbitrary accuracy. Thus, it offers a simple

solution dealing with the wide range of the system parameters. All kinds of control

schemes, including the classical sliding mode control, have been proposed in the field of

AC machine control during the past decades [5].

Among these different proposed designs, the sliding mode control strategy has shown

robustness against motor parameter uncertainties and unmodelled dynamics,

insensitivity to external load disturbance, stability and a fast dynamic response [6], [7],

[8]. Hence it is found to be very effective in controlling electric drives systems. Large

torque chattering at steady state may be considered as the main drawback for such a

control scheme [6]. One way to improve sliding mode controller performance is to

combine it with Fuzzy Logic (FL) to form a Fuzzy Sliding Mode (FSM) controller [9].

In the DFOC of DFIM, the knowledge of rotor speed and flux is necessary. In this work

the flux is obtained by the measurement of stator and rotor (rotor winding) currents. The

speed is measured.



Y. Bekakra et al. J Fundam Appl Sci. 2010, 2(2), 272-287 275

In this paper, we begin with the DFIM oriented model in view of the vector-control,

next the stator flux s is estimated. We, then, present the sliding mode theory and

design the sliding mode and fuzzy sliding mode controllers of motor speed. Finally,

conclusions are summarized in the last section.

1.1. The DFIM model

Its dynamic model expressed in the synchronous reference frame is given by Voltage

equations [1], [2]:

s
s s s s s

r
r r r r r

d
u R i j

dt

d
u R i j

dt


 


 

  

  

(1)
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From (1) and (2), the state-all-flux model is written like:
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The electromagnetic torque is done as:

e s r
s r

PM
C m

L L
 


     (4)

and its associated motion equation is:

e r

d
C C J

dt


  (5)

1.2. Direct Field-Oriented Control of DFIM

In this section, the DFIM model can be described by the following state equations in

the synchronous reference frame whose axis d is aligned with the stator flux vector,

( sd s  and 0sq  ), [10], [11]:
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Where:

rdi , rqi are rotor current components, sd , sq are stator flux components, sdV , sqV are

stator voltage components, rdV , rqV rotor voltage components. sR and rR are stator and

rotor resistances, sL and sL are stator and rotor inductances, M is mutual inductance,

 is leakage factor and P is number of pole pairs. eC is the electromagnetic torque,

rC is the load torque, J is the moment of inertia of the DIFIM,  is mechanical speed,

s is the stator pulsation,  is the rotor pulsation, f is the friction coefficient, sT and

rT are statoric and rotoric  time-constant.

1.3. Stator flux estimator

For the direct stator flux orientation control (DSFOC) of DFIM, accurate knowledge

of the magnitude and position of the stator flux vector is necessary. In a DFIM motor

mode, as stator and rotor current are measurable, the stator flux can be estimated

(calculate). The flux estimator can be obtained by the following equations:
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sd s sd rdL i Mi   (14)

sq s sq rqL i Mi   (15)

The position stator flux is calculated by the following equations:

r s    (16)

In which:

s sdt   , dt   , P   .

1.4. Sliding Mode Control

A Sliding Mode Controller (SMC) is a Variable Structure Controller (VSC).

Basically, a VSC includes several different continuous functions that can map plant

state to a control surface, whereas switching among different functions is determined by

plant state represented by a switching function [12].

The design of the control system will be demonstrated for a following nonlinear system

[13]:

.

( , ) ( , ). ( , )x f x t B x t u x t  (17)

Where nx  is the state vector, mu  is the control vector, ( , ) nf x t  ,

( , ) n mB x t  .

From the system (17), it possible to define a set S of the state trajectories x such as:

 ( ) ( , ) 0S x t x t  (18)

Where:

 1 2( , ) ( , ), ( , ),..., ( , )
T

mx t x t x t x t    (19)

and  . T
denotes the transposed vector, S is called the sliding surface.

To bring the state variable to the sliding surfaces, the following two conditions have to

be satisfied:

.

( , ) 0 , ( , ) 0x t x t   (20)

The control law satisfies the precedent conditions is presented in the following form:

( ( , ))

eq n

n
f

u u u

u k sgn x t

 

 
(21)
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Where u is the control vector, equ is the equivalent control vector, nu is the switching

part of the control (the correction factor), fk is the controller gain. equ can be obtained

by considering the condition for the sliding regimen, ( , ) 0x t  . The equivalent control

keeps the state variable on sliding surface, once they reach it.

For a defined function  [14], [15]:

1, 0

( ) 0, 0

1, 0

if

sgn if

if


 




 
 

(22)

The controller described by the equation (21) presents high robustness, insensitive to

parameter fluctuations and disturbances, but it will have high-frequency switching

(chattering phenomena) near the sliding surface due to sgn function involved. These

drastic changes of input can be avoided by introducing a boundary layer with width 

[16]. Thus replacing ( ( ))sgn t by s ( ( ) / )at t  (saturation function), in (21), we have

( ( , ))eq
fu u k sat x t  (23)
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s ( )

, 1

sgn if
at

if

 


 

  


(24)

Consider a Lyapunov function [14]:

21

2
V  (25)

From Lyapunov theorem we know that if
.

V is negative definite, the system trajectory

will be driven and attracted toward the sliding surface and remain sliding on it until the

origin is reached asymptotically [16]:

. .
21

2

d
V

dt
        (26)

Where  is a strictly positive constant.

In this paper, we use the sliding surface proposed par J.J. Slotine,

1

( , )
n

d
x t e

dt
 


   
 

(27)

Where
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x  [
.

1, ,..., nx x x  ]T is the      state      vector, dx  [
.

, ,...,d d dx x x ]T is the

desired state vector,
.

1, ,...,d ne x x e e e       
is the error  vector, and  is a  positive

coefficient, and n is the system order.

Commonly, in DFIM control using sliding mode theory, the surfaces are chosen as

functions of the error between the reference input signal and the measured signals [13].

1.5. Speed Control with SMC

The speed error is defined by:

refe    (28)

For 1n  , the speed control manifold equation can be obtained from equation (27) as

follow:

( ) refe      (29)

. . .

( ) ref     (30)

Substituting the expression of
.

 equation (13) in equation (30), we obtain:
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We take:

eq n
rq rq rqi i i  (32)

During the sliding mode and in permanent regime, we have:

.

( ) 0, ( ) 0, 0n
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Where the equivalent control is:

..

. .
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Therefore, the correction factor is given by:

( ( ))
rq

n
rq ii k sat   (34)

rqik : negative constant.



Y. Bekakra et al. J Fundam Appl Sci. 2010, 2(2), 272-287 280

1.6. Speed Control with fuzzy Sliding Mode Control

The disadvantage of sliding mode controllers is that the discontinuous control signal

produces chattering dynamics; chatter is aggravated by small time delays in the system.

In order to eliminate the chattering phenomenon, different schemes have been proposed

in the literature [9]. Another approach to reduce the chattering phenomenon is to

combine (Fuzzy Logic) FL with a Sliding Mode control (SMC) [15]. Hence, a new

Fuzzy Sliding Mode (FSM) controller is formed with the robustness of SMC and the

smoothness of FL. The fuzzy sliding mode control combines the advantages of the two

techniques [17] (SMC and FL). The control by  fuzzy  logic is introduced here in order

to improve the dynamic performances of the system and makes it possible to reduce the

residual vibrations in high frequencies [17] (chattering phenomenon). The switching

functions of sliding mode and FSM schemes are shown in figure 1. In this technique,

the saturation function is replaced by a fuzzy inference system to smooth the control

action. The block diagram of the hybrid fuzzy sliding mode controller is shown in

figure 2.

Fig.1. Switching functions (a) Sliding mode (b) Fuzzy sliding mode

Fig.2. Fuzzy sliding mode speed controller
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Fig.3. Block diagram of speed fuzzy sliding mode controller

1.7. Synthesis of the regulator fuzzy-PI:

With this intention, we take again the internal diagram of the fuzzy regulator,

figure3.

We have :

.su K S (35)

or:

. ( ( ))
rqiS k sat S  (36)

Substituting the equation (35) in equation (36), we obtain:

. . ( ( ))
rqisu K k sat S  (37)

The fuzzy-PI output is:

. .p iy k u k u   (38)

Substituting the equation (37) in equation (38), we obtain:

   . . . ( ( )) . . . ( ( ))
rq rqi ip s siy K K k sat S K K k sat S    (39)

Where: sK is the gain of the speed surface, pK is the proportional factor; iK is the

integral factor,
rqik : negative constant, u is the fuzzy output, ( ))S  is the speed

surface.

The membership functions for the input and output of the FL controller are obtained by

trial error to ensure optimal performance and are shown in figure 4.


+

-

fuzzy-PI controller

Ki
Fuzzy logic
controller +

Kp

KS



y

S(  )
+

+

eq
rqi

Fuzzy sliding mode controller

*
rqi

u

+

n
rqi



Y. Bekakra et al. J Fundam Appl Sci. 2010, 2(2), 272-287 282

(a)                                                         (b)

Fig.4. Fuzzy logic membership functions (a) input (b) output

The If-Then rules of the fuzzy logic controller can be written as [9]:

If s is BN then un is BIGGER

If s is MN then un is BIG

If s is JZ then un is MEDIUM

If s is MP then un is SMALL

If s is BP then un is SMALLER

In this paper, the triangular membership function, the max-min reasoning method, and

the center of gravity defuzzification method are used, as those methods are most

frequently used in many literatures [18].

1.8. Law of control

The structure of a fuzzy sliding mode controller as a sliding mode controller

comprises two parts: the first relates to the equivalent control ( )equ and the second is

the correction factor ( )nu , but into the case of a fuzzy sliding mode controller we

introduce the fuzzy logic control into this last part ( )nu .

We have the equation (33) :

..

. .
eq s r

refrq
sd

J L C f
i

P M J J
       
 

(40)

and we have of figure 3:

n
rqi y (41)

Substituting the equation (39) in equation (41), we obtain:

   . . . ( ( )) . . . ( ( ))
rq rq

n
rq i ip s sii K K k sat S K K k sat S    (42)
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2. RESULTS AND DISCUSSION

The FSMC controller in a vector-control of DFIM is used as presented in figure 5.

The DFIM used in this work is a 0.8 kW, whose nominal parameters are reported in

appendix.

Fig.5. Block diagram of vector-control of DFIM using FSMC controller

The motor is operated at 157 rad/s under no load and a load disturbance torque (5 N.m)

is suddenly applied at t=0.5s and eliminated at t=0.8s, followed by a consign inversion

(-157 rad/s) at t=1s, also a load disturbance torque (-5 N.m) is suddenly applied at

t=1.5s and eliminated at t=1.8s.

In these tests, the SMC (figure 6) rejects the load disturbance instantaneous with no

overshoot and without static error.

The same tests applied for SMC are applied with the FSMC. Figure 7 shows the

performances of the fuzzy sliding mode controller (FSMC).

The control presents the best performances, to achieve tracking of the desired trajectory.

The fuzzy sliding mode controller also rejects the load disturbance instantaneous with

no overshoot and without static error.

The simulation results show that the proposed controller is superior to SMC in

eliminating chattering phenomena that appears torque oscillation (figure 6 and figure 7).

The FSMC rejects the load disturbance instantaneous with no overshoot, with a

minimum response time more than the SMC, which is shown clearly in figure 8.
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Fig.8. Simulated results of the comparison between the SMC and FSMC of DFIM

Fig.7. Results of speed control

using FSMC controller

Fig.6. Results of speed control

using SMC controller
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2.1. Robust control for different values of the moment of inertia

In order to test the robustness of the used method (FSMC) we have studied the effect

of the parameters uncertainties on the performances of the speed control.

To show the effect of the parameters uncertainties, we have simulated the system with

different values of the parameter considered and compared to nominal value (real

value).

We consider:

-The moment of inertia (+50%).

For the robustness of control, an increase of the moment of inertia J gives best

performances, but it presents a slow dynamic response (figure 9). The proposed control

gives to our controller a great place towards the control of the system with unknown

parameters.

Fig.9. Test of robustness for two values of moment of inertia: nominal case and +50%

3. CONCLUSION

In this paper, a direct Field-Oriented Control of doubly fed induction motor by fuzzy

sliding mode regulator has been presented. Simulation results show good performance

obtained with proposed control. Also, compared to the conventional sliding mode

control. The different simulation results obtained show the high robustness of the
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controller in presence of the parameters variation as the moment of inertia or the load.

The control of speed gives fast dynamic response. The decoupling, stability and

convergence to equilibrium point are verified. Simulations results reveal some very

interesting features and show that the proposed fuzzy sliding mode control could be

used as an alternative to the conventional sliding mode control of induction motors.

Appendix

Rated Data of the simulated doubly fed induction motor:

Rated values: 0.8 KW; 220/380 V-50 Hz; 3.8/2.2 A, 1420 rpm.

Rated parameters:

Rs = 11.98 Ω

Rr = 0.904 Ω

Ls = 0.414 H

Lr = 0.0556 H

M = 0.126 H

P = 2.0

Mechanical constants:

J = 0.01 Kg.m2

f = 0.00 I.S.
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