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Introduction

Fixed point theorems constitute an important and interesting aspect of applicable mathematics

and provide solutions to several linear and nonlinear problems arising in biological, engineering

and physical sciences.

The origins of metric contraction principles and, ergo, metric fixed point theory itself, rest

in the method of successive approximations for proving existence and uniqueness of solutions

of differential equations.

This method is associated with the names of such celebrated nineteenth century mathem-

aticians as Cauchy, Liouville, Lipschitz, Peano, and, especially, Picard.

The origin of fixed point theory is a method of successive approximations used to prove the

existence of differential equation solutions introduced by Picard in 1890.

However it is the Polish mathematician Stefan Banach, in his thesis (1922), who is credited

with placing the ideas underlying the method into an abstract framework suitable for broad

applications well beyond the scope of elementary differential and integral equations. We can

distinguish three major approaches in fixed point theory:

1. metric approach.

2. topological approach

3. discrete approach
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Historically, these approaches were initiated by the discovery of three major theorems:

1. Banach fixed point theorem.

2. Brouwer fixed point theorem.

3. Tarski fixed point theorem.

In this thesis, we are concerned with the first approach.

Metric fixed point theory is an important mathematical discipline because of its applications in

different areas such as variational and linear inequalities, optimization theory, boundary value

problems, etc.

In the context of metric fixed point theory many researchers have been working on general-

izing the Banach fixed point theorem by either:

1) Generalizing the type of the contraction

In the literature, there are plenty of extensions of the famous Banach contraction principle

such as:

• nonexpansive mapping

• F-contraction

• Meir-Keeler contraction

• Suzuki-contraction

2) by extending the metric space itself:

• b-metric spaces

• p-metric spaces

• D-metric spaces

• G-metric spaces
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• rectangular metric space

• quasimetric spaces

• Probabilistic metric spaces, etc...

and by now there exists considerable literature on all these generalizations of metric spaces.

For more details, you can see for exemple [?]

Recently, Azam and al.[1] was the first introduced the complex valued metric spaces

which is more general than well-know metric spaces and also gave common fixed point theorems

for mappings satisfying generalized contraction condition.

The aim of this thesis is to present a class of some recent advances in this theory, that is,

Fixed Point Theorems in Complex Valued Metric Spaces.

In first chapter we presente some preliminaire and the original Banach fixed point theorem.

The second chapter introduce the complex valued metric spaces and related fixed point

theorems. It is the the detail of the article [1].

The third chapter give more results in complex valued metric spaces and related fixed point

theorems. It is the the detail of the article [17].

Finaly the fourth chapter presente a generalized common fixed point theorems in complex

valued metric spaces and the study of an important application. it is the detail of article [19].
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Chapter 1
Metric Spaces and Banach Contraction

Mapping Theorem

In this chapter, we will mention for a metric spaces and some of their properties, and giving

some examples. Finally We will also talk about Banach’s fixed point theorem and its proof.

1.1 Metric Spaces

Definition 1.1.1. Let X be a non-empty set. A collection of J of subsets of X is called a

topology on X, if

1. ϕ,X ∈ T

2. G1 ∩G2 ∈ T for G1, G2 ∈ T

3.
⋃

G∈F
G ∈ T for any F ⊆ T .

Any subset of X belonging to T is called an open set or more precisely T -open set. The

pair (X, T ) is called a topological space. Given a topological space (X, T ),
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Definition 1.1.2. A topological space X is said to be Hausdorff if given any two points x, y ∈ X

there are open sets U and V in X such that x ∈ U, y ∈ V and U ∩ V = ∅

Definition 1.1.3. Let X be a non-empty set. A metric on X, or distance function, associates

to each pair of elements x, y ∈ X a real number d(x, y) such that

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Exemple 1. X = R, The standard metric is given by d(x, y) = |x− y|. There are many other

metrics on R, for example:

d(x, y) = |ex − ey|

Definition 1.1.4. Let (X, d) be a metric space, let x ∈ X and let r > 0. The open ball centered

at x, with radius r, is the set

B(x, r) = {y ∈ X : d(x, y) < r}

and the closed ball is the set

B[x, r] = {y ∈ X : d(x, y) ≤ r}

Note that in R with the usual metric the open ball is B(x, r) =]x− r, x+ r[, an open interval,

and the closed ball is B[x, r] = [x− r, x+ r], a closed interval.

Definition 1.1.5. A subset U of a metric space (X, d) is said to be open, if for each point

x ∈ U there is an r > 0 such that the open ball B(x, r) is contained in U . Clearly X itself is

an open set, and by convention the empty set ∅ is also considered to be open.

Proposition 1.1.1. Every open ball B(x, r) is an open set.
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Proof. For if y ∈ B(x, r), choose δ = r − d(x, y). We claim that B(y, δ) ⊂ B(x, r). If

z ∈ B(y, δ), i.e., d(z, y) < δ, then by the triangle inequality

d(z, x) ≤ d(z, y) + d(y, x) < δ + d(x, y) = r. So z ∈ B(x, r).

Definition 1.1.6. A subset F of (X, d) is said to be closed, if its complement F c is open.

Note that closed does not mean not open. In a metric space the sets ∅ and X are both open

and closed. In R we have: ]a, b[ is open. [a, b] is closed, since its complement ]−∞, a[∪]b,+∞[

is open. [a, b[ is not open, since there is no open ball B(a, r) contained in the set. Nor is it

closed, since its complement ]−∞, a[∪[b,+∞[ isnt open (no ball centred at b can be contained

in the set).

Remark 1.1.1. Every metric space is a Hausdorff topological space.

Definition 1.1.7. We say xn −→ x (i.e. (xn) tends to x or converges to x) if d(xn, x) −→ 0

as n −→ +∞.That is, for all ϵ > 0 there is an N such that d(xn, x) < ϵ for n ≥ N .

Definition 1.1.8. A sequence (xn) in a metric space (X, d) is a Cauchy sequence if for any

ϵ > 0 there is an N such that d(xn, xm) < ϵ for all n,m ≥ N

Exemple 2. take xn =
1

n
in R with the usual metric. Now d(xn, xm) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ Suppose that

n and m are both at least as big as N , then d(xn, xm) ≤
1

N
.

Proposition 1.1.2. Suppose that (xn) is a convergent sequence in a metric space (X, d), i.e,

there is a limit point x such that d(xn, x) −→ 0. Then (xn) is a Cauchy sequence.

Proof. take ϵ > 0. Then there is an N such that d(xn, x) <
ϵ

2
whenever n ≥ N . Now suppose

both n ≥ N and m ≥ N . Then d(xn, xm) ≤ d(xn, x)+d(x, xm) = d(xn, x)+d(xm, x) <
ϵ

2
+
ϵ

2
= ϵ

and we are done.

Proposition 1.1.3. Every subsequence of a Cauchy sequence is a Cauchy sequence.
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Proof. if (xn) is Cauchy and (xnk
) is a subsequence, then given ϵ > 0 there is an N such that

d(xn, xm) < ϵ whenever n,m ≥ N . Now there is a K such that nk ≥ N whenever k ≥ K. So

d(xnk
, xnl

) < ϵ whenever k, l ≥ K.

Definition 1.1.9. A metric space (X, d) is complete if every Cauchy sequence in X converges

to a limit in X.

1.2 Banach’s Contraction Mapping Theorem

Definition 1.2.1. Let (X, d) be a metric space. A map Φ : X −→ X is a contraction mapping,

if there exists a constant k < 1 such that d(Φ(x),Φ(y)) ≤ kd(x, y) for all x, y ∈ X.

Exemple 3. Take X = [0, 1], usual metric, and Φ(x) =
x2

3
Then

d (Φ(x),Φ(y)) =

∣∣∣∣x2

3
− y2

3

∣∣∣∣ = ∣∣∣∣13(x− y)(x+ y)

∣∣∣∣ ≤ 2

3
|x− y| = 2

3
d(x, y)

So Φ is a contraction mapping, with k =
2

3
.

Theorem 1.2.1 (Banach’s Contraction Mapping Theorem). Let (X, d) be a complete metric

space, and let Φ : X −→ X be a contraction mapping. Then Φ has a unique fixed point.

Proof. Notice first that if x1, x2 ∈ X are fixed points of f , then

d(x1, x2) = d(f(x1), f(x2)) ≤ λd(x1, x2)

which imply x1 = x2. Choose now any x0 ∈ X, and define the iterate sequence xn+1 = f(xn).

By induction on n,

d(xn+1, xn) ≤ λnd(f(x0), x0)
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. If n ∈ N and m ≥ 1,

d(xn+m, xn) ≤ d(xn+m, xn+m−1) + · · ·+ d(xn+1, xn)

≤ (λn+m + · · ·+ λn)d(f(x0), x0) (1)

≤ λn

1− λ
d(f(x0), x0).

Hence (xn) is a Cauchy sequence, and admits a limit x̄ ∈ X, for X is complete. Since f is

continuous, we have f(x̄) = lim
n−→+∞

f(xn) = lim
n−→+∞

xn+1 = x̄.

Remark 1.2.1. Notice that letting m −→ +∞ in (1) we find the relation

d(xn, x̄) ≤
λn

1− λ
d(f(x0), x0)

which provides a control on the convergence rate of (xn) to the fixed point x̄. The completeness

of X plays here a crucial role. Indeed, contractions on incomplete metric spaces may fail to

have fixed points.

Exemple 4. Let X =]0, 1] with the usual distance. Define f : X −→ X as f(x) =
x

2
.

is clear that f a contraction mapping but it’s have not any fixed point .

Corollary 1.2.1. Let X be a complete metric space and let f : X → X. If fn is a contraction,

for some n ≥ 1, then f has a unique fixed point x̄ ∈ X.

Proof. Let x̄ be the unique fixed point of fn, given by Theorem (1.2.1) Then

fn(f(x̄)) = f (fn(x̄)) = f(x̄), which implies f(x̄) = x̄. Since a fixed point of f is clearly a fixed

point of fn, we have uniqueness as well
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Chapter 2
First Common Fixed Point Theorem in

Complex Valued Metric Spaces

In this chapter we will define a partial order on C, and see a definition of a complex valued

metric, and we will talk about the topology defined by this new metric, and we will see the

principal theory in this chapter, which is an extension of Banach’s fixed point theorem, and

giving some examples.

This chapter is the the detail of the article [1].

2.1 Partial Order in C and New Definitions

Definition 2.1.1. [1] Let C be the set of complex numbers and z1, z2 ∈ C Define a partial order

≾ on C as follows:

z1 ≾ z2 ⇐⇒ (Re(z1) ≤ Re(z2)) ∧ (Im(z1) ≤ Im(z2))

In particular, we will write z1 ⋨ z2 if (z1 ̸= z2) ∧ (z1 ≾ z2) and we will write z1 ≺ z2 if

(Re(z1) < Re(z2)) ∧ (Im(z1) < Im(z2)).
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Note that:

0 ≾ z1 ⋨ z2 =⇒ |z1| < |z2|

(z1 ≾ z2) ∧ (z2 ≺ z3) =⇒ z1 ≺ z3

Definition 2.1.2. [1] Let X be a nonempty set. Suppose that the mapping d : X ×X −→ C,

satisfies:

1. for all x, y ∈ X, d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. d(x, y) ≾ d(x, z) + d(z, y) for all x, y, z ∈ X

Then d is called a complex valued metric on X, and (X, d) is called a complex valued metric

space.

A point x ∈ X is called interior point of a set A ⊆ X whenever there exists 0 ≺ r ∈ C such

that

B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A

A point x ∈ X is called a limit point of A whenever for every 0 ≺ r ∈ C

B(x, r) ∩ (A− {x}) ̸= ∅

A is called open whenever each element of A is an interior point of A. A subset B ⊆ X is called

closed whenever each limit point of B belongs to B.

Remark 2.1.1. (X, d) is a hausdorff topological space.

Definition 2.1.3. [1] Let (xn) be a sequence in X and x ∈ X. If for every 0 ≺ c ∈ C, with

0 ≺ c there is n0 ∈ N such that for all n > n0, d(xn, x) ≺ c, then (xn) is said to be convergent,

(xn) converges to x and x is the limit point of (xn). We denote this by lim
n−→+∞

xn = x, or

xn −→ x, as n −→ +∞.
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Definition 2.1.4. [1] If for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for all

n > n0, and all m ∈ N : d(xn, xn+m) ≺ c ∈ C, then (xn) is called a Cauchy sequence

in (X, d). If every Cauchy sequence is convergent in (X, d), then (X, d) is called a complete

complex valued metric space.

Lemma 2.1.1. [1] Let (X, d) be a complex valued metric space and let (xn) be a sequence in

X. Then (xn) converges to x if and only if |d (xn, x)| → 0 as n → ∞.

Proof. Suppose that (xn) converges to x. For a given real number ϵ > 0, let

c =
ϵ√
2
+ i

ϵ√
2

Then 0 ≺ c ∈ C and there is a natural number N , such that

d (xn, x) ≺ c for all n > N

Therefore,

|d (xn, x)| < |c| = ϵ for all n > N

It follows that

|d (xn, x)| → 0 as n → ∞

Conversely, suppose that |d (xn, x)| → 0 as n → ∞. Then given c ∈ C with 0 ≺ c, there exists

a real number δ > 0, such that for z ∈ C

|z| < δ =⇒ z ≺ c

For this δ, there is a natural number N such that

|d (xn, x)| < δ for all n > N

This means that d (xn, x) ≺ c for all n > N . Hence (xn) converges to x.

Lemma 2.1.2. [1] Let (X, d) be a complex valued metric space and let (xn) be a sequence in

X. Then (xn) is a Cauchy sequence if and only if |d (xn, xn+m)| → 0 as n → ∞.
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Proof. Suppose that (xn) is a Cauchy sequence. For a given real number ϵ > 0, let

c =
ϵ√
2
+ i

ϵ√
2

Then 0 ≺ c ∈ C and there is a natural number N , such that:

d (xn, xn+m) ≺ c for all n > N

Therefore,

|d (xn, xn+m)| ≺ |c| = ϵ for all n > N

It follows that

|d (xn, xn+m)| → 0 as n → ∞

Conversely, suppose that |d (xn, xn+m)| → 0 as n → ∞. For given c ∈ C with 0 ≺ c, there

exists a real number δ > 0, such that for z ∈ C

|z| < δ =⇒ z ≺ c

For this δ, there is a natural number N such that:

|d (xn, xn+m)| < δ for all n > N .

That is d (xn, xn+m) ≺ c for all n > N and so (xn) is a Cauchy sequence.

2.2 An Extension Of The Banach Fixed Point Theorem

Theorem 2.2.1. [1] Let (X, d) be a complete complex valued metric space and let the mappings

S, T : X −→ X satisfy:

d(Sx, Ty) ≾ λd(x, y) +
µd(x, Sx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ X, where λ, µ are nonnegative reals with λ+ µ < 1. Then S, T have a unique

common fixed point.
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Proof. Let x0 be an arbitrary point in X and define

x2k+1 = Sx2k

x2k+2 = Tx2k+1, k = 0, 1, 2, . . .

Then,

|d (x2k+1, x2k+2) | =|d (Sx2k, Tx2k+1) |

≤ λ|d (x2k, x2k+1) |+
µ|d (x2k+1, Tx2k+1) ||d (x2k, Sx2k) |

|1 + d (x2k, x2k+1) |

≤ λ|d (x2k, x2k+1) |+
µ|d (x2k+1, x2k+2) ||d (x2k, x2k+1) |

|1 + d (x2k, x2k+1) |

≤ λ|d (x2k, x2k+1) |+ µ|d (x2k+1, x2k+2) |

since |d (x2k, x2k+1) | ≤ |1 + d (x2k, x2k+1) |

≤ λ

1− µ
|d (x2k, x2k+1) |.

Similarly,

|d (x2k+2, x2k+3) | = |d (Sx2k+2, Tx2k+1) |

≤ λ|d (x2k+2, x2k+1) |+
µ|d (x2k+1, Tx2k+1) ||d (x2k+2, Sx2k+2) |

|1 + d (x2k+2, x2k+1) |

≤ λ|d (x2k+2, x2k+1) |+
µ|d (x2k+1, x2k+2) ||d (x2k+2, x2k+3) |

|1 + d (x2k+1, x2k+2) |

≤ λ|d (x2k+2, x2k+1) |+ µ|d (x2k+2, x2k+3) |

≤ λ

1− µ
|d (x2k+2, x2k+1) |.

Now with h =
λ

1− µ
, we have

|d (xn+1, xn+2) | ≤ h|d (xn, xn+1) |

≤ · · · ≤ hn+1|d (x0, x1) |.

So for any m > n,

|d (xn, xm) | ≤ |d (xn, xn+1) |+ |d (xn+1, xn+2) |+ · · ·+ |d (xm−1, xm) |

≤
[
hn + hn+1 + · · ·+ hm−1

]
|d (x0, x1) |

≤
[

hn

1− h

]
|d (x0, x1) |
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and so

|d (xm, xn)| ≤
hn

1− h
|d (x0, x1)| → 0, as m,n → ∞.

This implies that (xn) is a Cauchy sequence. Since X is complete, there exists u ∈ X such that

xn → u. It follows that u = Su, otherwise d(u, Su) = z > 0 and we would then have

|z| ≤ |d (u, x2k+2) |+ |d (x2k+2, Su) |

≤ |d (u, x2k+2) |+ |d (Tx2k+1, Su) |

≤ |d (u, x2k+2) |+ λ|d (x2k+1, u) |+
µ|d (x2k+1, Tx2h+1) ||d(u, Su)|

|1 + d (u, x2k+1) |

≤ |d (u, x2k+2) |+ λ|d (x2k+1, u) |+
µ|d (x2k+1, x2k+2) ||z|
|1 + d (u, x2k+1) |

This implies that

|z| ≤ |d (u, x2k+2)|+ λ |d (x2k+1, u)|+
µ |d (x2k+1, x2k+2)| |z|
|1 + d (u, x2k+1)|

.

That is |z| = 0, a contradiction and, hence, u = Su. It follows similarly that u = Tu. We now

show that S and T have unique common fixed point. For this, assume that u∗ in X is a second

common fixed point of S and T . Then

d (u, u∗) = d (Su, Tu∗)

≾ λd (u, u∗) +
µd(u, Su)d (u∗, Tu∗)

1 + d (u, u∗)

≾ λd (u, u∗) .

This implies that u∗ = u, completing the proof of the theorem.

Corollary 2.2.1. [1] Let (X, d) be a complete complex valued metric space and let the mapping

T : X −→ X satisfy:

d(Tx, Ty) ≾ λd(x, y) +
µd(x, Tx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ X, where λ, µ are nonnegative reals with λ + µ < 1. Then T has a unique fixed

point.
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Corollary 2.2.2. [1] Let (X, d) be a complete complex valued metric space and T : X −→ X

satisfy:

d(T nx, T ny) ≾ λd(x, y) +
µd(x, T nx)d(y, T ny)

1 + d(x, y)

for all x, y ∈ X, where λ, µ are nonnegative reals with λ + µ < 1. Then T has a unique fixed

point.

Proof. By Corollary (2.2.1) we obtain a unique v ∈ X such that

T nv = v

The result then follows from the fact that

d(Tv, v) = d (TT nv, T nv) = d (T nTv, T nv)

≾ λd(Tv, v) +
µd (Tv, T nTv) d (v, T nv)

1 + d(Tv, v)

≾ λd(Tv, v) +
µd (Tv, TT nv) d(v, v)

1 + d(Tv, v)
= λd(Tv, v)

So Tv = v, This implies v is a fixed point of T .

We now show that T have unique fixed point. For this, assume that v1 ∈ X is a second fixed

point of T

Tv1 = v1 ⇒ T 2v1 = Tv1 = v1 ⇒ · · · ⇒ T nv1 = v1

So v1 is a fixed point of T n, but T n have a unique fixed point v. This implies that v = v1

So T have a unique fixed point.

Exemple 5. Let

X1 = {z ∈ C : 0 ≤ Re(z) ≤ 1, Im(z) = 0}

X2 = {z ∈ C : 0 ≤ Im(z) ≤ 1,Re(z) = 0}

and let X = X1 ∪X2. Then with z = x+ iy, define

Tz =


ix if z ∈ X1

1

2
y if z ∈ X2.

18



If du is usual metric on X then T is not contractive as

du (Tz1, T z2) = |x1 − x2| = du (z1, z2) if z1, z2 ∈ X1

Therefore, the Banach contraction theorem is not valid to find the unique fixed point 0 of T .

To apply the corollary(2.2.1), consider a complex valued metric d : X ×X −→ C as follows:

d (z1, z2) =



2

3
|x1 − x2|+

i

2
|x1 − x2| , if z1, z2 ∈ X1,

1

2
|y1 − y2|+

i

3
|y1 − y2| , if z1, z2 ∈ X2,

(
2

3
x1 +

1

2
y2

)
+ i

(
1

2
x1 +

1

3
y2

)
, if z1 ∈ X1, z2 ∈ X2

(
1

2
y1 +

2

3
x2

)
+ i

(
1

3
y1 +

1

2
x2

)
, if z1 ∈ X2, z2 ∈ X1,

where z1 = x1 + iy1, z1 = x2 + iy2 ∈ X. Then (X, d) is a complete complex valued metric space

and

d (Tz1, T z2) ≾
3

4
d (z1, z2) for all z1, z2 ∈ X
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Chapter 3
More Common Fixed Point Theorems in

Complex Valued Metric Spaces

In this chapter, we will talk about other common fixed point theorem in complex valued metric

spaces, which are considered a generalization of the second chapter theorems, and giving some

examples to show their importance.

This chapter is the the detail of the article [17].

Definition 3.0.1. [17] Two families of self-mappings {Ti}mi=1 and {Si}ni=1 are said to be pairwise

commuting if:

1. TiTj = TjTi, i, j ∈ {1, 2, . . . ,m}.

2. SiSj = SjSi, i, j ∈ {1, 2, . . . , n}.

3. TiSj = SjTi, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}
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3.1 Common Fixed Point Theorems

Theorem 3.1.1. [17] If S and T are self-mappings defined on a complete complex valued metric

space (X, d) satisfying the condition

d(Sx, Ty) ≾ λd(x, y) +
µd(x, Sx)d(y, Ty) + γd(y, Sx)d(x, Ty)

1 + d(x, y)
(3.1)

for all x, y ∈ X where λ, µ, γ are nonnegative reals with λ + µ + γ < 1, then S and T have a

unique common fixed point.

Proof. Let x0 be an arbitrary point in X and define x2k+1 = Sx2k, x2k+2 = Tx2k+1,

k = 0, 1, 2, . . . Then

d (x2k+1, x2k+2) =d (Sx2k, Tx2k+1) ≾ λd (x2k, x2k+1)

+
µd (x2k, Sx2k) d (x2k+1, Tx2k+1) + γd (x2k, Tx2k+1) d (x2k+1, Sx2k)

1 + d (x2k, x2k+1)

Since

x2k+1 = Sx2k ⇒ d (x2k+1, Sx2k) = 0

therefore

d (x2k+1, x2k+2) ≾ λd (x2k, x2k+1) +
µd (x2k, x2k+1) · d (x2k+1, x2k+2)

1 + d (x2k, x2k+1)

so that

|d (x2k+1, x2k+2)| ≤ λ |d (x2k, x2k+1)|+
µ |d (x2k, x2k+1)| · |d (x2k+1, x2k+2)|

|1 + d (x2k, x2k+1)|

Since

|1 + d (x2k, x2k+1)| > |d (x2k, x2k+1)|

therefore

|d (x2k+1, x2k+2)| ≤ λ |d (x2k, x2k+1)|+ µ |d (x2k+1, x2k+2)|

so that

|d (x2k+1, x2k+2)| ≤
λ

1− µ
|d (x2k, x2k+1)| .
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Also,

d (x2k+2, x2k+3) =d (Tx2k+1, Sx2k+2) = d (Sx2k+2, Tx2k+1) ≾ λd (x2k+2, x2k+1)

+
µd (x2k+2, Sx2k+2) d (x2k+1, Tx2k+1) + γd (x2k+1, Sx2k+2) d (x2k+2, Tx2k+1)

1 + d (x2k+2, x2k+1)
.

Since

x2k+2 = Tx2k+1 ⇒ d (x2k+2, Tx2k+1) = 0

therefore

d (x2k+2, x2k+3) ≾ λd (x2k+2, x2k+1) +
µd (x2k+2, Sx2k+2) d (x2k+1, Tx2k+1)

1 + d (x2k+2, x2k+1)

so that

|d (x2k+2, x2k+3)| ≤ λ |d (x2k+2, x2k+1)|+
µ |d (x2k+2, x2k+3)| · |d (x2k+1, x2k+2)|

|1 + d (x2k+2, x2k+1)|
.

As

|1 + d (x2k+2, x2k+1)| > |d (x2k+2, x2k+1)|

therefore

|d (x2k+2, x2k+3)| ≤
λ

1− µ
|d (x2k+1, x2k+2)| .

Putting h =
λ

1− µ
, we have (for all n ∈ N)

|d (xn, xn+1)| ≤ h |d (xn−1, xn)| ≤ h2 |d (xn−2, xn−1)| ≤ · · · ≤ hn |d (x0, x1)| .

Therefore, for any m > n, we have

|d (xn, xm)| ≤ |d (xn, xn+1)|+ |d (xn+1, xn+2)|+ |d (xn+2, xn+3)|+ · · ·+ |d (xm−1, xm)|

≤
[
hn + hn+1 + hn+2 + · · ·+ hm−1

]
|d (x0, x1)|

≤
[

hn

1− h

]
|d (x0, x1)|

so that

|d (xn, xm)| ≤
[

hn

1− h

]
|d (x0, x1)| → 0 as n → ∞.
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The sequence (xn) is Cauchy. Since X is complete, there exists some l ∈ X such that xn → l

as n → ∞. On the contrary, let l ̸= Sl so that d(l, Sl) = z > 0 and henceforth we can have

z = d(l, Sl) ≾ d (l, Tx2k+1) + d (Tx2k+1, Sl)

≾ d (l, x2k+2) + λd (l, x2k+1) +
µd(l, Sl)d (x2k+1, Tx2k+1) + γd (x2k+1, Sl) d (l, Tx2k+1)

1 + d (l, x2k+1)

≾ d (l, x2k+2) + λd (l, x2k+1) +
µz · d (x2k+1, Tx2k+1) + γd (x2k+1, Sl) d (l, Tx2k+1)

1 + d (l, x2k+1)

Also, for every k, we can write

|d(l, Sl)| ≤ |d (l, x2k+2)|+λ |d (l, x2k+1)|+
µ|z| · |d (x2k+1, x2k+2)|+ γ |d (x2k+1, Sl)| · |d (l, x2k+2)|

|1 + d (l, x2k+1)|
.

Making k → ∞, one gets |d(l, Sl)| = 0 which is a contradiction so that l = Sl. Similarly, one

can also show that l = T l. To prove the uniqueness of common fixed point, let l∗ (in X ) be

another common fixed point of S and T i.e. l∗ = Sl∗ = T l∗. Then

d (l, l∗) = d (Sl, T l∗) ≾ λd (l, l∗) +
µd(l, Sl)d (l∗, T l∗) + γd (I∗, Sl) d (l, T l∗)

1 + d (l, l∗)

= λd (l, l∗) +
γd (l∗, l) d (l, l∗)

1 + d (l, l∗)

so that

|d (l, l∗)| ≤ λ |d (l, l∗)|+ γ |d (l∗, l)| · |d (l, l∗)|
|1 + d (l, l∗)|

.

Since

|1 + d (l, l∗)| > |d (l, l∗)|

therefore

|d (l, l∗)| ≤ (λ+ γ) |d (l, l∗)|

which is a contradiction so that l = l∗ (as λ+ γ < 1). This completes the proof of the theorem.

Remark 3.1.1. By setting S = T in Theorem (3.1.1), one deduces the following:

Corollary 3.1.1. [17] If T : X → X is a self-mapping defined on a complete complex valued

metric space (X, d) satisfying the condition
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d(Tx, Ty) ≾ λd(x, y) +
µd(x, Tx)d(y, Ty) + γd(y, Tx)d(x, Ty)

1 + d(x, y)

for all x, y ∈ X, where λ, µ, γ are nonnegative reals with λ + µ + γ < 1, then T has a unique

fixed point.

Theorem 3.1.2. [17] If {Ti}m1 and {Si}n1 are two finite pairwise commuting finite families of

self-mapping defined on a complete complex valued metric space (X, d) such that the mappings S

and T (with T = T1T2 · · ·Tm and S = S1S2 · · ·Sn) satisfy condition (3.1), then the component

maps of the two families {Ti}m1 and {Si}n1 have a unique common fixed point.

Proof. In view of Theorem (3.1.1), one can infer that T and S have a unique common fixed

point l i.e. T l = Sl = l. Now we are required to show that l is a common fixed point of all the

component maps of both the families. In view of pairwise commutativity of the families {Ti}m1

and {Si}n1 , (for every 1 ≤ k ≤ m) we can write

Tkl = TkSl = STkl and Tkl = TkT l = TTkl

which show that Tkl( for every k) is also a common fixed point of T and S. By using the

uniqueness of common fixed point, we can write Tkl = l (for every k ) which shows that l is

a common fixed point of the family {Ti}m1 . Using the foregoing arguments, one can also show

that (for every 1 ≤ k ≤ n)Skl = l. This completes the proof of the theorem.

By setting T1 = T2 = · · · = Tm = F and S1 = S2 = · · · = Sn = G, in Theorem (3.1.2), we

derive the following common fixed point theorem involving iterates of mappings.

Corollary 3.1.2. [17] If F and G are two commuting self-mappings defined on a complete

complex valued metric space (X, d) satisfying the condition

d (Fmx,Gny) ≾ λd(x, y) +
µd (x, Fmx) d (y,Gny) + γd (y, Fmx) d (x,Gny)

1 + d(x, y)

for all x, y ∈ X, where λ, µ, γ are nonnegative reals with λ + µ + γ < 1, then F and G have a

unique common fixed point.
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By setting m = n and F = G = T in Corollary (3.1.2), we deduce the following corollary.

Corollary 3.1.3. [17] If T : X → X is a mapping defined on a complete complex valued metric

space (X, d) satisfying the condition ( for some fixed n ):

d (T nx, T ny) ≾ λd(x, y) +
µd (x, T nx) d (y, T ny) + γd (y, T nx) d (x, T ny)

1 + d(x, y)

for all x, y ∈ X, where λ, µ, γ are nonnegative reals with λ + µ + γ < 1, then T has a unique

fixed point.

Corollary 3.1.4. [17] If T : X → X is a mapping defined on a complete complex valued metric

space (X, d) satisfying the condition

d (T nx, T ny) ≾ λd(x, y)

for all x, y ∈ X, where λ, are nonnegative reals with λ < 1, then T has a unique fixed point.

Exemple 6. Let X = C be the set of complex numbers. Define d : C× C → C by

d (z1, z2) = |x1 − x2| + i |y1 − y2| where z1 = x1 + iy1 and z2 = x2 + iy2. Then (C, d) is a

complete complex valued metric space. Define T : C → C as

T (x+ iy) =



0, x, y ∈ Q

1 + i, x, y ∈ Qc

1, x ∈ Qc, y ∈ Q

i, x ∈ Q, y ∈ Qc

Now for x =
1√
2

and y = 0 we get

d

(
T

(
1√
2

)
, T (0)

)
= d(1, 0) = 1 ≾ λd

(
1√
2
, 0

)
= λ

1√
2

Thus λ ≥
√
2, which is a contradiction as 0 ≤ λ < 1. However, notice that T 2z = 0, so that

0 = d
(
T 2z1, T

2z2
)
≾ λd (z1, z2)
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3.2 More Common Fixed Point Theorems

Theorem 3.2.1. [17] Let (X, d) be a complete complex valued metric space wherein the map-

pings S, T : X → X satisfy the inequality

d(Sx, Ty) ≾



λd(x, y) + µ
d(x, Sx)d(y, Ty) + d(y, Sx)d(x, Ty)

d(Sx, x) + d(Ty, y)

+γ
d(x, Sx)d(x, Ty) + d(y, Sx)d(y, Ty)

d(Sx, y) + d(Ty, x)
, if D ̸= 0, D1 ̸= 0

0, if D = 0 or D1 = 0

(3.2)

for all x, y ∈ X, where D = d(Sx, x) + d(Ty, y) and D1 = d(Sx, y) + d(Ty, x) and λ, µ, γ are

nonnegative reals with λ+ µ+ γ < 1. Then S, T have unique common fixed point

Proof. Let x0 be an arbitrary point in X.

Define x2k+1 = Sx2k and x2k+2 = Tx2k+1, k = 0, 1, 2, . . . Now, we distinguish two cases.

First, if [d (Sx2k, x2k) + d (Tx2k+1, x2k+1)][d (Sx2k, x2k+1) + d (Tx2k+1, x2k)] ̸= 0, and

[d (Sx2k+2, x2k+2) + d (Tx2k+1, x2k+1)][d (Sx2k+2, x2k+1) + d (Tx2k+1, x2k+2)] ̸= 0.

(for Any k = 0, 1, 2, . . .), then

d (x2k+1, x2k+2) =d (Sx2k, Tx2k+1) ≾ λd (x2k, x2k+1)

+ µ
d (x2k, Sx2k) d (x2k+1, Tx2k+1) + d (x2k+1, Sx2k) d (x2k, Tx2k+1)

d (Sx2k, x2k) + d (Tx2k+1, x2k+1)

+ γ
d (x2k, Sx2k) d (x2k, Tx2k+1) + d (x2k+1, Sx2k) d (x2k+1, Tx2k+1)

d (Sx2k, x2k+1) + d (Tx2k+1, x2k)
.

Since x2k+1 = Sx2k and x2k+2 = Tx2k+1, therefore

d (x2k+1, x2k+2) ≾λd (x2k, x2k+1) + µ
d (x2k, x2k+1) d (x2k+1, x2k+2) + d (x2k+1, x2k+1) d (x2k, x2k+2)

d (x2k+1, x2k) + d (x2k+2, x2k+1)

+ γ
d (x2k, x2k+1) d (x2k, x2k+2) | d (x2k+1, x2k+1) d (x2k+1, x2k+2)

d (x2k+1, x2k+1) + d (x2k+2, x2k)

or

d (x2k+1, x2k+2) ≾ λd (x2k, x2k+1)+µ
d (x2k, x2k+1) d (x2k+1, x2k+2)

d (x2k+1, x2k) + d (x2k+2, x2k+1)
+γ

d (x2k, x2k+1) d (x2k, x2k+2)

d (x2k+2, x2k)

so that

|d (x2k+1, x2k+2)| ≤ λ |d (x2k, x2k+1)|+ µ
|d (x2k, x2k+1)| · |d (x2k+1, x2k+2)|
|d (x2k+1, x2k) + d (x2k+2, x2k+1)|

+ γ |d (x2k, x2k+1)|
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Since

|d (x2k+1, x2k) + d (x2k+2, x2k+1)| ≥ |d (x2k+1, x2k)|

therefore

|d (x2k+1, x2k+2)| ≤ λ |d (x2k, x2k+1)|+ µ |d (x2k+1, x2k+2)|+ γ |d (x2k, x2k+1)|

so that

|d (x2k+1, x2k+2)| ≤
λ+ γ

1− µ
|d (x2k, x2k+1)| .

Also

d (x2k+2, x2k+3) =d (Sx2k+2, Tx2k+1) ≾ λd (x2k+2, x2k+1)

+ µ
d (x2k+2, Sx2k+2) d (x2k+1, Tx2k+1) + d (x2k+1, Sx2k+2) d (x2k+2, Tx2k+1)

d (Sx2k+2, x2k+2) + d (Tx2k+1, x2k+1)

+ γ
d (x2k+2, Sx2k+2) d (x2k+2, Tx2k+1) + d (x2k+1, Sx2k+2) d (x2k+1, Tx2k+1)

d (Sx2k+2, x2k+1) + d (Tx2k+1, x2k+2)

Since x2k+3 = Sx2k+2 and x2k+2 = Tx2k+1, we get

d (x2k+2, x2k+3) ≾ λd (x2k+2, x2k+1) + µ
d (x2k+2, x2k+3) d (x2k+1, x2k+2) + d (x2k+1, x2k+3) d (x2k+2, x2k+2)

d (x2k+3, x2k+2) + d (x2k+2, x2k+1)

+ γ
d (x2k+2, x2k+3) d (x2k+2, x2k+2) + d (x2k+1, x2k+3) d (x2k+1, x2k+2)

d (x2k+3, x2k+1) + d (x2k+2, x2k+2)

or

d (x2k+2, x2k+3) ≾ λd (x2k+2, x2k+1)+µ
d (x2k+2, x2k+3) d (x2k+1, x2k+2)

d (x2k+3, x2k+2) + d (x2k+2, x2k+1)
+γ

d (x2k+1, x2k+3) d (x2k+1, x2k+2)

d (x2k+1, x2k+3)

so that

|d (x2k+2, x2k+3)| ≤ λ |d (x2k+2, x2k+1)|+ µ
|d (x2k+2, x2k+3)| · |d (x2k+1, x2k+2)|
|d (x2k+3, x2k+2) + d (x2k+2, x2k+1)|

+ γ |d (x2k+1, x2k+2)|

Since

|d (x2k+3, x2k+2) + d (x2k+2, x2k+1)| ≥ |d (x2k+1, x2k+2)|

therefore

|d (x2k+2, x2k+3)| ≤ λ |d (x2k+2, x2k+1)|+ µ |d(x2k+2, x2k+3)|+ γ |d (x2k+1, x2k+2)|
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so

|d (x2k+2, x2k+3)| ≤
λ+ γ

1− µ
|d (x2k+1, x2k+2)|

Now, with h =
λ+ γ

1− µ
, we have (for all n )

|d (xn, xn+1)| ≤ h |d (xn−1, xn)|

≤ · · · ≤ hn |d (x0, x1)|

So, for any m > n, we have

|d (xn, xm)| ≤ |d (xn, xn+1)|+ |d (xn+1, xn+2)|+ · · ·+ |d (xm−1, xm)|

≤
[
hn + hn+1 + · · ·+ hm−1

]
|d (x0, x1)|

≤
[

hn

1− h

]
|d (x0, x1)|

and henceforth

|d (xn, xm)| ≤
[

hn

1− h

]
|d (x0, x1)| → 0 as m,n → ∞.

We conclude that (xn) is a Cauchy sequence. Since X is a complete, then there exists l ∈ X

such that xn → l as n → ∞. Now, we assert that l = Sl, otherwise d(l, Sl) = z > 0 and we

have

z =d(l, Sl) ≾ d (l, Tx2k+1) + d (Tx2k+1, Sl)

≾ d (l, x2k+2) + λd (l, x2k+1) + µ
d(l, Sl)d (x2k+1, Tx2k+1) + d (x2k+1, Sl) d (l, Tx2k+1)

d(Sl, l) + d (Tx2k+1, x2k+1)

+ γ
d(l, Sl)d (l, Tx2k+1) + d (x2k+1, Sl) d (x2k+1, Tx2k+1)

d (Sl, x2k+1) + d (Tx2k+1, l)

which amounts to say that

|z| =|d(l, Sl)| ≤ |d (l, x2k+2)|+ λ |d (l, x2k+1)|+ µ
|z| · |d (x2k+1, x2k+2)|+ |d (x2k+1, Sl)| · |d (l, x2k+2)|

|d(Sl, l) + d (x2k+2, x2k+1)|

+ γ
|z| · |d (l, x2k+2)|+ |d (x2k+1, Sl)| · |d (x2k+1, x2k+2)|

|d (Sl, x2k+1) + d (x2k+2, l)|
,

a contradiction so that |z| = |d(l, Sl)| = 0 i.e. l = Sl. It follows, similarly, that l = T l. We

now prove that S and T have a unique common fixed point. For this, assume that l∗ in X is

an another common fixed point of S and T . Then we have Sl∗ = T l∗ = l∗
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Since D = d(Sl, l) + d (T l∗, l∗) = 0, therefore by definition of contraction condition

d (l, l∗) = d (Sl, T l∗) = 0 so that l = l∗ which proves the uniqueness of common fixed point.

Second, we consider the case:(for any k)

(d (Sx2k, x2k) + d (Tx2k+1, x2k+1))× (d (Sx2k, x2k+1) + d (Tx2k+1, x2k)) = 0 (3.3)

or

(d (Sx2k+2, x2k+2) + d (Tx2k+1, x2k+1))× (d (Sx2k+2, x2k+1) + d (Tx2k+1, x2k+2)) = 0 (3.4)

if (3.3) is satisfy, This implies d (Sx2k, Tx2k+1) = 0.

so, x2k = Sx2k = x2k+1 = Tx2k+1 = x2k+2. Thus, we have x2k+1 = Sx2k = x2k, so there exist

n1 and m1 such that n1 = Sm1 = m1. Using foregoing arguments, one can also show that

there exist n2 and m2 such that n2 = Tm2 = m2. As d (Sm1,m1) + d (Tm2,m2) = 0, (due to

definition) implies d (Sm1, Tm2) = 0, so that n1 = Sm1 = Tm2 = n2 which in turn yields that

n1 = Sm1 = Sn1. Similarly, one can also have n2 = Tn2. As n1 = n2, implies Sn1 = Tn1 = n1,

therefore n1 = n2, is a common fixed point of S and T

We now prove that S and T have unique common fixed point. For this, assume that n∗
1 in

X is an another common fixed point of S and T . Then we have

Sn∗
1 = Tn∗

1 = n∗
1

Since D = d (Sn1, n1) + d (Tn∗
1, n

∗
1) = 0, therefore

d (n1, n
∗
1) = d (Sn1, Tn

∗
1) = 0

This implies that n∗
1 = n1

if (3.4) is satisfy, This implies d (Sx2k+2, Tx2k+1) = 0.

so, x2k+1 = Tx2k+1 = x2k+2 = Sx2k+2 = x2k+3., then also proof can be completed by the same

method. This completes the proof of the theorem.

By setting S = T , we get the following.
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Corollary 3.2.1. [17] Let (X, d) be a complete complex valued metric space and let the map-

pings T : X → X satisfy:

d(Tx, Ty) ≾



λd(x, y) + µ
d(x, Tx)d(y, Ty) + d(y, Tx)d(x, Ty)

d(Tx, x) + d(Ty, y)

+γ
d(x, Tx)d(x, Ty) + d(y, Tx)d(y, Ty)

d(Tx, y) + d(Ty, x)
, if D ̸= 0, D1 ̸= 0

0, if D = 0 or D1 = 0

(3.5)

for all x, y ∈ X, where D = d(Tx, x) + d(Ty, y) and D1 = d(Tx, y) + d(Ty, x) and λ, µ, γ are

nonnegative reals with λ+ µ+ γ < 1. Then T has a unique fixed point.

As an application of Theorem (3.2.1), we prove the following theorem for two finite families

of mappings.

Theorem 3.2.2. [17] If {Ti}m1 and {Si}n1 are two finite pairwise commuting finite families of

self-mapping defined on a complete complex valued metric space (X, d) such that the mappings S

and T (with T = T1T2 · · ·Tm and S = S1S2 · · ·Sn) satisfy condition (3.2), then the component

maps of the two families {Ti}m1 and {Si}n1 have a unique common fixed point.

Proof. The proof of this theorem is identical to that of Theorem (3.1.2).

By setting T1 = T2 = · · · = Tm = F and S1 = S2 = · · · = Sn = G, in Theorem (3.2.2), we

derive the following common fixed point theorem involving iterates of mappings.

Corollary 3.2.2. [17] If F and G are two commuting self-mappings defined on a complete

complex valued metric space (X, d) satisfying the condition

d (Fmx,Gny) ≾



λd(x, y) + µ
d (x, Fmx) d (y,Gny) + d (y, Fmx) d (x,Gny)

d (Fmx, x) + d (Gny, y)

+γ
d (x, Fmx) d (x,Gny) + d (y, Fmx) d (y,Gny)

d (Fmx, y) + d (Gny, x)
, if D ̸= 0, D1 ̸= 0

0, if D = 0 or D1 = 0

for all x, y ∈ X, where D = d (Fmx, x) + d (Gny, y) and D1 = d (Fmx, y) + d (ny, x) and λ, µ, γ

are nonnegative reals with λ+ µ+ γ < 1. Then F ,G have a unique common fixed point.

30



By setting m = n and F = G = T in Corollary (3.2.2), we deduce the following corollary.

Corollary 3.2.3. [17] Let (X, d) be a complete complex valued metric space and let the map-

pings T : X → X satisfy ( for some fixed n):

d (T nx, T ny) ≾



λd(x, y) + µ
d (x, T nx) d (y, T ny) + d (y, T nx) d (x, T ny)

d (T nx, x) + d (T ny, y)

+γ
d (x, T nx) d (x, T ny) + d (y, T nx) d (y, T ny)

d (T nx, y) + d (T ny, x)
, if D ̸= 0, D1 ̸= 0

0, if D = 0 or D1 = 0

(3.6)

for all x, y ∈ X where λ, µ, γ are nonnegative reals with λ+ µ+ γ < 1 besides

D = d (T nx, x) + d (T ny, y) and D1 = d (T nx, y) + d (T ny, x). Then T has a unique fixed point.

Exemple 7.

X1 = {z ∈ C : Re(z) ≥ 0, lm(z) = 0}

X2 = {z ∈ C : Im(z) ≥ 0,Re(z) = 0}

and write X = X1 ∪X2. Define a mapping d : X ×X → C as

d (z1, z2) =



i |x1 − x2| , z1, z2 ∈ X1

2i

3
|y1 − y2| , z1, z2 ∈ X2

i

(
x1 +

2

3
y2

)
, z1 ∈ X1, z2 ∈ X2

i

(
x2 +

2

3
y1

)
, z1 ∈ X2, z2 ∈ X1

where z1 = x1+iy1, z2 = x2+iy2, then (X, d) is a complete complex valued metric space. Define

a self-mapping T on X (with z = x+ iy) as

T (x+ iy) =


0, x, y ∈ Q

1, x ∈ Qc, y ∈ Q

i, x ∈ Q, y ∈ Qc
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By a routine calculation, one can verify that the map T 2 satisfies condition (3.6) with

λ = µ = γ =
1

4
(say). It is interesting to notice that this example cannot be covered by

Corollary (3.2.1) as z1 = 0, z2 =
1√
11

∈ X implies

i =d (Tz1, T z2) ≾ λd (z1, z2) + µ
d (z1, T z1) d (z2, T z2) + d (z2, T z1) d (z1, T z2)

d (Tz1, z1) + d (Tz2, z2)

+ γ
d (z1, T z1) d (z1, T z2) + d (z2, T z1) d (z2, T z2)

d (Tz1, z2) + d (Tz2, z1)

=λ0.3015i+ µ0.4216i+ γ0.1617i ≾ 0.8848i

a contradiction for every choice of λ, µ, γ which amounts to say that condition (3.5) is not

satisfied. Notice that the point 0 ∈ X remains fixed under T and T 2 and is indeed unique.
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Chapter 4
Generalized Common Fixed Point Theorems in

Complex Valued Metric Spaces and Application

In this chapter, we will talk about some properties and special points in maps. We will also see a

theorems in algebra that will help us in proving important theorems, which are a generalization

of the theorems of the second chapter. and we will see an application to study the existence

and uniquness of common solution of the system Urysohn integral equations.

This chapter is the the detail of the article [19].

4.1 Map’s Properties and Special Points

Definition 4.1.1. [19] Let S and T be self mappings of a nonempty set X.

1. A point x ∈ X is said to be a coincidence point of S and T if Sx = Tx and we shall

called w = Sx = Tx that a point of coincidence of S and T.

2. A point x ∈ X is said to be a common fixed point of S and T if x = Sx = Tx.

Definition 4.1.2. [19] Let X be a non-empty set. The mappings S and T are commuting if
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TSx = STx for all x ∈ X.

Definition 4.1.3. [19] Let S and T be mappings from a metric space (X, d) into itself. The

mappings S and T are said to be weakly commuting if

d(STx, TSx) ≤ d(Sx, Tx)

for all x ∈ X.

Definition 4.1.4. [19] Let S and T be mappings from a metric space (X, d) into itself. The

mapping S and T are said to be compatible if lim
n→+∞

d(STxn, TSxn) = 0 whenever (xn) is a

sequence in X such that lim
n→+∞

Sxn = lim
n→+∞

Txn = z for some z ∈ X

Remark 4.1.1. In general, commuting mappings are weakly commuting and weakly commuting

mappings are compatible, but the converses are not necessarily true.

Exemple 8. [16] Let X = [0, 1] with the usual metric. Define f(x) =
x

2
and g(x) =

x

2 + x
.

Then, for all x in X, one obtains

d(fgx, gfx) =
x

4 + x
− x

4 + 2x
=

x2

(4 + x)(4 + 2x)
≤ x2

4 + 2x
=

x

2
− x

2 + x
= d(fx, gx)

f and g are weakly commuting. But, for any non-zero x ∈ X, we have

gfx =
x

4 + x
>

x

4 + 2x
= fgx

f and g do not commute.

Exemple 9. [13] Let X = [0, 1] with the usual metric. Define f(x) = x3 and g(x) = 2x3. is

clear that f and g are not weakly commuting but are compatible.

Definition 4.1.5. [19] Let S and T be self mappings of a nonempty set X. The mapping S

and T are weakly compatible if STx = TSx whenever Sx = Tx.

Remark 4.1.2. Every compatible mapping are weakly compatible,but the convers is not

necessarily true.
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Exemple 10. [7] Let X = [2, 20] with the usual metric. Define

A(x) =


2 x = 2

13 + x , 2 < x ≤ 5

x− 3 x > 5

S(x) =


2 , x ∈ {2}∪]5, 20]

8 , 2 < x ≤ 5

Let (xn) be the sequence defined by xn = 5 +
1

n
, n ≥ 1. Then Clearly A and S are weakly

compatible maps, but are not compatible, because

lim
n→+∞

Axn = lim
n→+∞

Sxn = 2

but

lim
n→+∞

ASxn = 2 ̸= 8 = lim
n→+∞

SAxn

Lemma 4.1.1. [9] Let X be a nonempty set and T : X −→ X be a function. Then there exists

a subset E ⊆ X such that T (E) = T (X) and T : E −→ X is one-to-one.

Proof. Proof. Define a multifunction, F : T (X) → 2X ,by F (y) = {x ∈ X : T (x) = y}.

By using the axiom of choice, F has a selector that is, there is a function g : T (X) → X

such that g(y) ∈ F (y) for all y ∈ T (X). Note that, T (g(y)) = y for all y ∈ T (X). Now, put

E = {g(y) : y ∈ T (X)}. It is clear that T is one-to-one on E and T (E) = T (X).

4.2 Common Fixed Points Theorems

Theorem 4.2.1. [19] Let (X, d) be a complete complex valued metric space and S, T : X → X.

If there exists a mapping Λ,Ξ : X → [0, 1[ such that for all x, y ∈ X :

1. Λ(Sx) ≤ Λ(x) and Ξ(Sx) ≤ Ξ(x).
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2. Λ(Tx) ≤ Λ(x) and Ξ(Tx) ≤ Ξ(x)

3. (Λ + Ξ)(x) < 1.

4. d(Sx, Ty) ≾ Λ(x)d(x, y) +
Ξ(x)d(x, Sx)d(y, Ty)

1 + d(x, y)
.

Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Since S(X) ⊆ X and T (X) ⊆ X, we can construct

the sequence {xk} in X such that

x2k+1 = Sx2k and x2k+2 = Tx2k+1 (4.1)

for all k ≥ 0. From hypothesis and (4.1) we get

|d (x2k+1, x2k+2) | = |d (Sx2k, Tx2k+1) |

≤ Λ (x2k) |d (x2k, x2k+1) |+
Ξ (x2k) |d (x2k, Sx2k) ||d (x2k+1, Tx2k+1) |

|1 + d (x2k, x2k+1) |

= Λ (x2k) |d (x2k, x2k+1) |+
Ξ (x2k) |d (x2k, x2k+1) ||d (x2k+1, x2k+2) |

|1 + d (x2k, x2k+1) |

= Λ (x2k) |d (x2k, x2k+1) |+ Ξ (x2k) |d (x2k+1, x2k+2) |
(

|d (x2k, x2k+1) |
|1 + d (x2k, x2k+1) |

)
≤ Λ (x2k) |d (x2k, x2k+1) |+ Ξ (x2k) |d (x2k+1, x2k+2) |

= Λ (Tx2k−1) |d (x2k, x2k+1) |+ Ξ (Tx2k−1) |d (x2k+1, x2k+2) |

≤ Λ (x2k−1) |d (x2k, x2k+1) |+ Ξ (x2k−1) |d (x2k+1, x2k+2) |

= Λ (Sx2k−2) |d (x2k, x2k+1) |+ Ξ (Sx2k−2) ||d (x2k+1, x2k+2) |

≤ Λ (x2k−2) |d (x2k, x2k+1) |+ Ξ (x2k−2) |d (x2k+1, x2k+2) |

...

≤ Λ (x0) |d (x2k, x2k+1) |+ Ξ (x0) |d (x2k+1, x2k+2) |,

which is implies that

|d (x2k+1, x2k+2) | ≤
(

Λ (x0)

1− Ξ (x0)

)
|d (x2k, x2k+1) |.
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Similarly, we get

|d (x2k+2, x2k+3) | = |d (x2k+3, x2k+2) |

= |d (Sx2k+2, Tx2k+1) |

≤ Λ (x2k+2) |d (x2k+2, x2k+1) |+
Ξ (x2k+2) |d (x2k+2, Sx2k+2) ||d (x2k+1, Tx2k+1) |

|1 + d (x2k+2, x2k+1) |

= Λ (x2k+2) |d (x2k+2, x2k+1) |+
Ξ (x2k+2) |d (x2k+2, x2k+3) ||d (x2k+1, x2k+2) |

|1 + d (x2k+1, x2k+2) |

= Λ (x2k+2) |d (x2k+2, x2k+1) |+ Ξ (x2k+2) |d (x2k+2, x2k+3) |
(

|d (x2k+2, x2k+1) |
|1 + d (x2k+1, x2k+2) |

)
≤ Λ (x2n+2) |d (x2k+2, x2k+1) |+ Ξ (x2k+2) |d (x2k+2, x2k+3) |

= Λ (Tx2k+1) |d (x2k+2, x2k+1) |+ Ξ (Tx2k+1) |d (x2k+2, x2k+3) |

≤ Λ (x2n+1) |d (x2k+2, x2k+1) |+ Ξ (x2k+1) |d (x2k+2, x2k+3) |

= Λ (Sx2k) |d (x2k+2, x2k+1) |+ Ξ (Sx2k) |d (x2k+2, x2k+3) |

≤ Λ (x2k) |d (x2k+2, x2k+1) |+ Ξ (x2k) |d (x2k+2, x2k+3) |

...

≤ Λ (x0) |d (x2k+2, x2k+1) |+ Ξ (x0) |d (x2k+2, x2k+3) |

= Λ (x0) |d (x2k+1, x2k+2) |+ Ξ (x0) |d (x2k+2, x2k+3) |,

which is implies that

|d (x2k+2, x2k+3) | ≤
(

Λ (x0)

1− Ξ (x0)

)
|d (x2k+1, x2k+2) |.

Now, we set α =
Λ (x0)

1− Ξ (x0)
, it follows that

|d (xn, xn+1) | ≤ α|d (xn−1, xn) |

≤ α2|d (xn−2, xn−1) |

...

≤ αn|d (x0, x1) |
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for all n ∈ N. Now, for any positive integer m and n with m > n, we have

|d (xn, xm) | ≤ |d (xn, xn+1) |+ |d (xn+1, xn+2) |+ · · ·+ |d (xm−1, xm) |

≤ αn|d (x0, x1) |+ αn+1|d (x0, x1) |+ · · ·+ αm−1|d (x0, x1) |

=
(
αn + αn+1 + · · ·+ αm−1

)
|d (x0, x1) |

≤
(

αn

1− α

)
|d (x0, x1) |.

Therefore,

|d (xn, xm)| ≤
(

αn

1− α

)
|d (x0, x1)| .

Since α ∈ [0, 1[, if we taking limit as m,n → 0, then |d (xn, xm)| → 0, which implies that (xn)

is a Cauchy sequence. By completeness of X, there exists a point z ∈ X such that xk → z as

k → ∞. Next, we claim that Sz = z. By the notion of a complex valued metric d, we have

d(z, Sz) ≾ d (z, x2k+2) + d (x2k+2, Sz)

= d (z, x2k+2) + d (Tx2k+1, Sz)

= d (z, x2k+2) + d (Sz, Tx2k+1)

≾ d (x2k+2, z) + Λ(z)d (z, x2k+1) +
Ξ(z)d(z, Sz)d (x2k+1, Tx2k+1)

1 + d (z, x2k+1)

= d (x2k+2, z) + Λ(z)d (z, x2k+1) +
Ξ(z)d(z, Sz)d (x2k+1, x2k+2)

1 + d (z, x2k+1)

which implies that

|d(z, Sz)| ≤ |d (x2k+2, z)|+ Λ(z) |d (z, x2k+1)|+
Ξ(z) |d (x2k+1, x2k+2)| |d(z, Sz)|

1 + |d (z, x2k+1)|
.

Taking k → ∞, we have |d(z, Sz)| = 0, which implies that d(z, Sz) = 0. Thus, we get z = Sz.

It follows similarly that z = Tz. Therefore, z is a common fixed point of S and T . Finally,

we show that z is a unique common fixed point of S and T . Assume that there exists another

common fixed point z1 that is z1 = Sz1 = Tz1. It follows from

d (z, z1) = d (Sz, Tz1)

≾ Λ(z)d (z, z1) +
Ξ(z)d(z, Sz)d (z1, T z1)

1 + d (z, z1)

= Λ(z)d (z, z1)
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That |d (z, z1)| ≤ Λ(z) |d (z, z1)|.

Since Λ(z) ∈ [0, 1[, we have |d (z, z1)| = 0. Therefore, we have z = z1 and thus z is a unique

common fixed point of S and T .

Corollary 4.2.1. [19] Let (X, d) be a complete complex valued metric space and S, T : X → X.

If S and T satisfy

d(Sx, Ty) ≾ λd(x, y) +
µd(x, Sx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ X, where λ, µ are nonnegative reals with λ+ µ < 1. Then S and T have a unique

common fixed point.

Proof. We can prove this result by applying Theorem (4.2.1)

by setting Λ(x) = λ and Ξ(x) = µ.

Corollary 4.2.2. [19] Let (X, d) be a complete complex valued metric space and T : X → X.

If there exists a mapping Λ,Ξ : X → [0, 1[ such that for all x, y ∈ X :

1. Λ(Tx) ≤ Λ(x) and Ξ(Tx) ≤ Ξ(x);

2. (Λ + Ξ)(x) < 1;

3. d(Tx, Ty) ≾ Λ(x)d(x, y) +
Ξ(x)d(x, Tx)d(y, Ty)

1 + d(x, y)
.

Then T has a unique fixed point.

Proof. We can prove this result by applying Theorem (4.2.1) with S = T .

Corollary 4.2.3. [19] Let (X, d) be a complete complex valued metric space and T : X → X.

If T satisfies

d(Tx, Ty) ≾ λd(x, y) +
µd(x, Tx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ X, where λ, µ are nonnegative reals with λ + µ < 1. Then T has a unique fixed

point.

Proof. We can prove this result by applying Corollary (4.2.2) with Λ(x) = λ and Ξ(x) = µ.
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Theorem 4.2.2. [19] Let (X, d) be a complete complex valued metric space and T : X → X.

If there exists a mapping Λ,Ξ : X → [0, 1[ such that for all x, y ∈ X and for some n ∈ N

1. Λ (T nx) ≤ Λ(x) and Ξ (T nx) ≤ Ξ(x);

2. (Λ + Ξ)(x) < 1;

3. d (T nx, T ny) ≾ Λ(x)d(x, y) +
Ξ(x)d (x, T nx) d (y, T ny)

1 + d(x, y)
.

Then T has a unique fixed point.

Proof. From Corollary (4.2.2), we get T n has a unique fixed point z. It follows from

T n(Tz) = T (T nz) = Tz

that Tz is a fixed point of T n. Therefore Tz = z by the uniqueness of a fixed point of T n and

then z is also a fixed point of T . Since the fixed point of T is also fixed point of T n, the fixed

point of T is unique.

Corollary 4.2.4. [19] Let (X, d) be a complete complex valued metric space and S, T : X → X.

If T satisfy

d (T nx, T ny) ≾ λd(x, y) +
µd (x, T nx) d (y, T ny)

1 + d(x, y)

for all x, y ∈ X for some n ∈ N, where λ, µ are nonnegative reals with λ+ µ < 1. Then T has

a unique fixed point.

Proof. We can prove this result by applying Theorem (4.2.2) with Λ(x) = λ and Ξ(x) = µ.

Next, we prove a common fixed point theorem for weakly compatible mappings in complex

valued metric spaces.
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Theorem 4.2.3. [19] Let (X, d) be a complex valued metric space, S, T : X → X such that

T (X) ⊆ S(X) and S(X) is complete. If there exists two mappings Λ,Ξ : X → [0, 1[ such

that for all x, y ∈ X

1. Λ(Tx) ≤ Λ(Sx) and Ξ(Tx) ≤ Ξ(Sx);

2. (Λ + Ξ)(Sx) < 1;

3. d(Tx, Ty) ≾ Λ(Sx)d(Sx, Sy) +
Ξ(Sx)d(Sx, Tx)d(Sy, Ty)

1 + d(Sx, Sy)
.

Then S and T have a unique point of coincidence in X. Moreover, if S and T are weakly

compatible, then S and T have a unique common fixed point in X.

Proof. By Lemma (4.1.1), there exists E ⊆ X such that S(E) = S(X) and S : E → X is

one-to-one. Since

T (E) ⊆ T (X) ⊆ S(X) = S(E)

we can define a mapping Θ : S(E) → S(E) by

Θ(Sx) = Tx (4.2)

Since S is one-to-one on E, then Θ is well-defined. From (1 ) and (4.2), we have

Λ(Θ(Sx)) ≤ Λ(Sx) and Ξ(Θ(Sx)) ≤ Ξ(Sx) (4.3)

From (3 ) and (4.2), we get

d(Θ(Sx),Θ(Sy)) ≾ Λ(Sx)d(Sx, Sy) +
Ξ(Sx)d(Sx,Θ(Sx))d(Sy,Θ(Sy))

1 + d(Sx, Sy)
(4.4)

for all Sx, Sy ∈ S(E). From S(E) = S(X) is complete and (4.3) and (4.4) are holds, we use

Corollary (4.2.2) with a mapping Θ, then there exists a unique fixed point z ∈ S(X) such that

Θz = z. Since z ∈ S(X), we have z = Sw for some w ∈ X. So Θ(Sw) = Sw that is Tw = Sw.
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Therefore, T and S have a unique point of coincidence. Next, we claim that S and T have a

common fixed point. Since S and T are weakly compatible and z = Tw = Sw, we get

Sz = STw = TSw = Tz

Hence Sz = Tz is a point of coincidence of S and T . Since z is the only point of coincidence

of S and T , we get z = Sz = Tz which implies that z is a common fixed point of S and T .

Finally, we show that z is a unique common fixed point of S and T . Assume that t be another

common fixed point that is

t = St = Tt

Thus t is also a point of coincidence of S and T . However, we know that z is a unique point of

coincidence of S and T . Therefore, we get t = z that is z is a unique common fixed point of S

and T .

4.3 Application

In this section, we apply Theorem (4.2.1) to the existence of common solution of the system of

Urysohn integral equations.

Theorem 4.3.1. [19]

Let X = C ([a, b],Rn), where [a, b] ⊆ R+ and d : X ×X → C is define by:

d(x, y) = max
t∈[a,b]

∥x(t)− y(t)∥∞
√
1 + a2ei tan

−1 a.

Consider the Urysohn integral equations

x(t) =

b∫
a

K1(t, s, x(s))ds+ g(t) (4.5)

x(t) =

b∫
a

K2(t, s, x(s))ds+ h(t) (4.6)
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where t ∈ [a, b] ⊂ R and x, g, h ∈ X. Suppose that K1, K2 : [a, b] × [a, b] × Rn → Rn are such

that Fx, Gx ∈ X for all x ∈ X, where

Fx(t) =

b∫
a

K1(t, s, x(s))ds

and

Gx(t) =

b∫
a

K2(t, s, x(s))ds

for all t ∈ [a, b]. If there exists two mappings Λ,Ξ : X → [0, 1[ such that for all x, y ∈ X the

following holds:

1. Λ (Fx + g) ≤ Λ(x) and Ξ (Fx + g) ≤ Ξ(x);

2. Λ (Gx + h) ≤ Λ(x) and Ξ (Gx + h) ≤ Ξ(x);

3. (Λ + Ξ)(x) < 1;

4. ∥Fx(t)−Gy(t) + g(t)− h(t)∥∞
√
1 + a2ei tan

−1 a ≾ Λ(x)A(x, y)(t) + Ξ(x)B(x, y)(t),

where

A(x, y)(t) = ∥x(t)− y(t)∥∞
√
1 + a2ei tan

−1 a

B(x, y)(t) =
∥Fx(t) + g(t)− x(t)∥∞ ∥Gy(t) + h(t)− y(t)∥∞

1 + d(x, y)

√
1 + a2ei tan

−1 a

then the system of integral Equations (4.5) and (4.6) have a unique common solution.

Proof. It is easily to check that (X, d) is a complex valued metric space. Define two mappings

S, T : X ×X → X by Sx = Fx + g and Tx = Gx + h. Then

d(Sx, Ty) = max
t∈[a,b]

∥Fx(t)−Gy(t) + g(t)− h(t)∥∞
√
1 + a2ei tan

−1 a

d(x, Sx) = max
t∈[a,b]

∥Fx(t) + g(t)− x(t)∥∞
√
1 + a2ei tan

−1 a

and

d(y, Ty) = max
t∈[a,b]

∥Gy(t) + h(t)− y(t)∥∞
√
1 + a2ei tan

−1 a.

It is easily seen that for all x, y ∈ X, we have
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1. Λ(Sx) ≤ Λ(x) and Ξ(Sx) ≤ Ξ(x);

2. Λ(Tx) ≤ Λ(x) and Ξ(Tx) ≤ Ξ(x);

3. d(Sx, Ty) ≾ Λ(x)d(x, y) +
Ξ(x)d(x, Sx)d(y, Ty)

1 + d(x, y)
.

By Theorem (4.2.1), we get S and T have a common fixed point. Thus there exists a unique

point x ∈ X such that x = Sx = Tx. Now, we have

x = Sx = Fx + g

and

x = Tx = Gx + h

that is

x(t) =

b∫
a

K1(t, s, x(s))ds+ g(t)

and

x(t) =

b∫
a

K2(t, s, x(s))ds+ h(t)

Therefore, we can conclude that the Urysohn integral (4.5) and (4.6) have a unique common

fixed point.

44



Abstract

In this note, we have discussed the definition of complex valued metric spaces, and study

of the existence and uniqueness of common fixed points.

In the first chapter we reminded of the metric space and Banach’s theory of the fixed point.

In the second chapter we studied theorems of the existence and uniqueness of the common

fixed points in complex valued metric spaces.

We made generalizations These theorems in the third and fourth chapters and we have

applied one of these theorems to prove the existence and uniqueness of common solution of the

system of Urysohn integral equations
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Résumé

Dans cette mémoire, nous avons discuté la définition des espaces métriques à valeurs

complexes, et l’étude de l’existence et l’unicité des points fixes communs.

Dans le premier chapitre nous avons rappelé l’espace métrique et la théorie de Banach du

point fixe.

Dans la deuxième chapitre, nous avons étudié les théories de l’existence et de l’unicité des points

fixes communs dans les espaces métriques à valeurs complexes.

Nous avons fait des généralisations des cettes théoremes dans le troisième et quatrième

chapitres, et nous avons appliqué l’un de ces théorèmes pour étudier l’existence et l’unicité de

solution commune du système d’équations intégrales d’Urysohn.
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ملخص
وجود دراسة و العقدية، القيم ذات ية المتر بالفضاءات يف التعر الى المذكرة هذه في تطرقنا لقد

المشتركة. الصامدة النقط وحدانية و
الصامدة. للنقطة بناخ ية نظر و المتري بالفضاء ذكرّنا الأول الفصل ففي

المشتركة. الصامدة النقط وحدانية و وجود يات نظر درسنا الثاني الفصل في أما
وجود لإثبات تطبيق تقديم مع الرابع و الثالث الفصلين في يات النظر لهاته بتعميمات قمنا قد و

لاوريشون. تكامليتين معادلتين جملة حل وحدانية و
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