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Abstract

Transformers have dominated the field of natural language processing and have recently made an impact in

the area of computer vision. The field of medical image analysis has been particularly interested in leveraging

the advancements made by Transformers, as opposed to the traditional Convolutional Neural Networks (CNNs).

Transformers have proven to be effective in various medical image processing applications, including classifi-

cation, registration, segmentation, detection, and diagnosis. The purpose of this memoir is to raise awareness

about the potential applications of Transformers in medical image processing. we provide firstly an overview

of the fundamental concepts of artificial intelligence and its relevance to computer vision, with a specific focus

on how Transformers and other essential components contribute to these advancements. Second, we conduct a

comprehensive review of different Transformer architectures tailored for medical image applications. We explore

their specific applications and discuss the challenges associated with using visual Transformers in this domain.

Within this dissertation we delve into the significant differences between CNNs and Transformers, with empha-

sising the proposed classification model enhancement image (brain MRI) by comparing the results with CNN

model.
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Résumé

Transformers have dominated the field of natural language processing and have recently made an impact in

the area of computer vision. The field of medical image analysis has been particularly interested in leveraging

the advancements made by Transformers, as opposed to the traditional Convolutional Neural Networks (CNNs).

Transformers have proven to be effective in various medical image processing applications, including classifi-

cation, registration, segmentation, detection, and diagnosis. The purpose of this memoir is to raise awareness

about the potential applications of Transformers in medical image processing. we provide firstly an overview

of the fundamental concepts of artificial intelligence and its relevance to computer vision, with a specific focus

on how Transformers and other essential components contribute to these advancements. Second, we conduct a

comprehensive review of different Transformer architectures tailored for medical image applications. We explore

their specific applications and discuss the challenges associated with using visual Transformers in this domain.
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General Introduction

Transformers have had a significant impact on computer vision, particularly in medical image processing

Recent works have shown that these Transformer modules can fully replace CNN in deep neural networks by

operating on a sequence of image patches, giving rise to Vision Transformers (ViTs). Since their inception, ViT

models have been shown to push the state-of-the-art in numerous vision tasks, including image classification,

object detection,Anomaly detection, Image Segmentation, image colorization Furthermore, recent research in-

dicates that the prediction errors of ViTs are more consistent with those of humans than CNNs. These desirable

properties of ViTs have sparked great interest in the medical community to adapt them for medical imaging

applications, thereby mitigating the inherent inductive biases of CNNs.

Vision Transformers (ViTs) have revolutionized computer vision, especially in the field of medical image pro-

cessing. Groundbreaking studies have demonstrated that Transformer modules can completely replace Convo-

lutional Neural Networks (CNNs) in deep neural networks by processing a sequence of image patches. This

breakthrough has given birth to ViTs, which have showcased remarkable advancements in various vision tasks,

including image classification, object detection, anomaly detection, image segmentation, and image colorization.

Moreover, recent research suggests that ViTs exhibit prediction errors that align more closely with human per-

ception compared to CNNs. These favorable attributes of ViTs have generated substantial interest within the

medical community, as they offer a promising solution to address the inherent biases of CNNs when applied to

medical imaging applications.

Recently, medical imaging community has witnessed an exponential growth in the number of Transformer

based techniques, especially after the inception of ViTs. in this dissertation we employed with pre-trained CNN

networks for the classification task, specifically using brain tumor datasets. We then compared the results

obtained from the CNN-based architecture with those from the ViT-based architecture in which We perform a

tow-classes classification task of detection tumor (with tumor and no tumor). We use datasets to 256 images

medical for MRI. All experiments are done on the fixed training and testing sets from the dataset for comparison

purposes between images who Contains tumors or not, then we highlight CNN & ViT models by calculaiting

accuracy loss function for (training and validation) task to the tested models. Furthemore, after setting both

models (CNN and ViT) and training them on the same dataset, we obtain ViT results performing ont much

better than CNN on various metric standards (ACC, LOSS).

This dissertation is devided on four chapter :

Chapter one : an overview of the fundamental concepts of artificial intelligence and its relevance to computer

vision, with a specific focus on how Transformers and other essential components contribute to these advance-

ments.

Chapter two : we conduct a comprehensive review of different Transformer architectures tailored for medical

image applications. We explore their specific applications and discuss the challenges associated with using visual



Transformers in this domain.

Chapter three : We discussed the various works related to our dissertation and the various applications of

converters to many fields in image processing.

Chapter four : we set two models (CNN and VIT) and train them on the same set of dataset then we provide

the results of each model and we compare both models in terms of accuracy and loss.



Chapitre 1

Background

1.1 Introduction

Transformers have revolutionized Natural Language Understanding (NLU), a branch of Natural Language

Processing (NLP) that has become a cornerstone of artificial intelligence within the worldwide digital economy.

Transformer models mark the beginning of a new era in artificial intelligence in general and especially in

computer vision. Language under- standing has become the pillar of language modeling, chatbots, personal

assistants, question answering, text summarizing, speech-to-text, sentiment analysis, machine translation, and

more

The significant advancements achieved by Transformer networks in the realm of Natural Language Processing

(NLP) have generated considerable interest among computer vision experts to apply these models to vision and

multi-modal learning tasks. However, visual data adheres to a specific structure (e.g., spatial and temporal

coherence), thereby necessitating the development of innovative network architectures and training methods.

Consequently, Transformer models and their variations have been effectively utilized for a variety of applications,

such as image recognition, object detection, segmentation, image super-resolution, video comprehension, image

generation, text-image synthesis, visual question answering, and many others.

The architecture of Transformers is based on a self-attention mechanism that can capture the relationships

between the elements of a sequence. Unlike recurrent networks that process sequence elements recursively

and can only focus on short-term context, Transformers can attend to the complete sequence, enabling them to

learn long-range relationships. While attention models have been widely used in both feed-forward and recurrent

networks, Transformers rely entirely on the attention mechanism and have a unique implementation (multi-head

attention) that is optimized for parallelization. These models have the crucial feature of being scalable to high-

complexity models and large-scale datasets. In contrast to some of the other alternatives such as hard attention,

which is stochastic in nature, Transformers do not rely on prior knowledge of the problem’s structure. Instead,

they are usually pre-trained on large-scale (unlabeled) datasets using pretext tasks. This pre-training enhances

their generalization ability when fine-tuning on downstream tasks.

1.2 Artificial Intelligence

The impact of Artificial Intelligence (AI) on computer vision has been significant, enabling computers to

perceive, understand, and interpret visual data with unprecedented efficiency. Computer vision is a subfield of

AI that focuses on equipping machines with the ability to process, analyze, and interpret visual information

from their surroundings.
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AI techniques in computer vision involve the use of deep learning algorithms, such as Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs), to facilitate computers in learning and recognizing

patterns and features in visual data. These algorithms are trained on large sets of labeled images, allowing them

to learn and identify objects, people, and other visual elements with high precision.

The integration of AI and machine learning and deep learning technologies plays a pivotal role in driving

computer vision forward. AI enables computer vision systems to comprehend, identify, and analyze various forms

of visual data. AI models, algorithms, and logic can quickly process, assimilate, and learn from vast amounts

of labeled and unlabeled visual data. This capability empowers computer vision-enabled machines to recognize

diverse features, patterns, and relationships in images, videos, graphics, and even infographics.

Figure 1.1 – Machine Learning Deep Learning[1]

2



1.2.1 The Most Important Trends of Artificial Intelligence
1.2.1.1 Machine Learning :

Machine Learning, a subfield of Artificial Intelligence (AI), is instrumental in enabling computer vision. It

uses algorithms and training data to automatically identify patterns with minimal human intervention. AI,

on the other hand, is a method for teaching computers to perform tasks that typically require human-like

intelligence. Deep Learning, a subset of Machine Learning, draws inspiration from the structure and function of

the human brain, which is represented symbolically by an artificial neural network. Although deep learning was

originally proposed in the 1980s, it has gained significant traction in recent years due to two primary reasons :

The availability of vast amounts of training data required for building highly complex models. For instance,

developing autonomous vehicles requires the collection of a large number of images and videos to train the

machine learning models.

The increase in computational power, which allows the training of deep neural networks with a large number

of layers, thereby significantly improving their accuracy in recognizing and understanding visual data[5].

Figure 1.2 – Machine Learning in the context of AI[1]

1.2.1.2 Types of Machin Learning

— Supervised Learning

Supervised learning, a subfield of both machine learning and artificial intelligence, involves using labeled

datasets to train algorithms to accurately classify data or predict outcomes. In other words, the key

characteristic of supervised learning is the use of labeled data for training[6].

— Unsupervised Learning

Unsupervised learning, a branch of machine learning and artificial intelligence, employs algorithms to

analyze and cluster unlabeled datasets, discovering latent patterns or data groupings without any human

intervention. In contrast to supervised learning, unsupervised learning does not require labeled data for

3



training[6] .

— Reinforcement Learning

Reinforcement learning is a type of machine learning in which an algorithm, also known as an agent,

learns by trial-and-error using feedback from its actions. In this approach, rewards and punishments serve

as signals that reinforce desired and discourage undesired behavior[6].

Deep Learning

Deep Learning refers to a class of algorithms that mimic the way humans draw conclusions by analyzing

data with a logical structure. This can be achieved through both supervised and unsupervised learning methods.

Deep Learning applications typically use a layered structure of algorithms known as an artificial neural network

(ANN) to accomplish this. The design of ANNs is inspired by the biological neural network of the human brain,

resulting in a learning process that is much more powerful than that of traditional machine learning models[5].

— Fildes of Deep Learning

Deep Learning has a broad range of applications across many fields. In the domain of automated driving,

for instance, Deep Learning is used to identify and recognize objects such as STOP signs and pedestrians.

The military leverages Deep Learning to detect objects from satellite imagery, allowing them to identify

safe or unsafe zones for their troops. Additionally, Deep Learning is ubiquitous in the consumer electronics

industry[5]

1.2.2 Recent Advances and Future Perspectives for Artificial Intelligence

The use of artificial intelligence (AI) in image recognition has made significant advancements in recent

years, reaching a level of performance that is comparable to that of humans. If AI-based image recognition

technology can be effectively applied in various fields, particularly in the medical field, it has the potential

to revolutionize the way medical procedures are conducted, such as intraoperative decision-making support,

image-guided surgery, and automated surgery. These advancements could lead to a more precise and efficient

medical practice, ultimately improving patient outcomes[7].

Also, Artificial intelligence and deep learning have become increasingly important in assisting clinicians

with more accurate diagnoses. In this regard, convolutional neural networks (CNNs) and visual transformers

(ViTs) are applied to medical images to aid healthcare professionals in tasks such as disease classification, lesion

detection, anatomical structure segmentation, automated report generation, image denoising, medical image

registration, and more [8].
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1.3 Computer Vision

Computer vision relies on optical sensors and algorithms to simulate human vision and extract useful infor-

mation from visual data. Compared to traditional methods, which are time-consuming and require sophisticated

laboratory setups, computer vision has emerged as a subfield of image processing and artificial intelligence.

Computer vision, a field of artificial intelligence (AI), empowers computers and systems to extract meaning-

ful information from digital images, videos, and other visual inputs, enabling them to take actions or make

recommendations based on this information. While AI enables computers to think, computer vision empowers

them to "see," observe, and understand visual data.

Similar to human vision, computer vision involves training machines to perform functions such as object

recognition, depth perception, motion detection, and anomaly detection. However, humans have a head start,

as they have a lifetime of context and experience to distinguish objects, estimate distances, detect motion, and

identify anomalies in images.

In contrast, computer vision achieves these tasks in a shorter timeframe, utilizing cameras, data, and algo-

rithms instead of human retinas, optic nerves, and visual cortex. The advantage of computer vision is that a

system trained to inspect products or monitor production assets can analyze thousands of products or processes

per minute, quickly detecting imperceptible defects or issues that may surpass human capabilities[9].

1.4 Medical Image Processing

The most common computer vision tasks in applications that utilise medical images including image clas-

sification, medical image segmentation, and shape/object recognition. DL-based methods have demonstrated

superiority over traditional methods in various medical applications, such as cancer detection, magnetic reso-

nance imaging (MRI) segmentation, X-ray analysis, and more. These advancements have led to more accurate

diagnoses, improved treatment planning, and ultimately better patient outcomes.

Medical image processing techniques leverage computer vision algorithms to analyze and manipulate various

types of medical images, such as X-rays, Computerized Tomography (CT) scans, Magnetic resonance imaging

(MRI) scans, and ultrasound images. These algorithms enable medical professionals to enhance images, segment

regions of interest, classify abnormal regions, and perform measurements and quantitative analysis.

One important application of medical image processing is image segmentation, which involves separating an

image into different regions based on their characteristics. This technique can be used to identify tumors, blood

vessels, or other structures in medical images. Image segmentation can also be used to detect abnormalities and

assist in the planning of surgical procedures[10].

Another application is image registration, which involves aligning multiple images of the same patient taken

at different times or from different angles. This technique can be used to track the progression of a disease or

to plan surgical procedures.

Overall, medical image processing using computer vision techniques has the potential to significantly improve

the accuracy and efficiency of medical diagnoses and treatments, leading to better patient outcomes. With

continued advancements in technology, we can expect to see even more powerful and innovative applications of

medical image processing in the future[10].
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1.4.1 Medical Image Processing Aim

Computer-aided detection (CADe) and computer-aided diagnosis (CADx) are computer-based systems uti-

lized in the medical imaging field to facilitate prompt decision-making by doctors. Given the time-sensitive

nature of medical imaging, doctors must quickly evaluate and analyze the information in the images to identify

abnormalities. While imaging techniques such as MRI, X-ray, endoscopy, and ultrasound are essential modali-

ties for early disease diagnosis, high-energy imaging can be harmful to the human body. To minimize the risk,

images are typically acquired using low energy, resulting in low-quality and low-contrast images. CAD systems

are employed to enhance image quality, aiding in the accurate interpretation of medical images by highlighting

conspicuous features[11].

1.4.1.1 Computer Aided Diagnosis

— Definition

computer-aided Diagnosis (CAD) technology is a multifaceted system that encompasses artificial intelli-

gence (AI), computer vision, and medical image processing. Its primary purpose is to identify abnorma-

lities within the human body.

— Objectifes

CAD aims to improve disease detection by minimizing false negatives resulting from human observation

oversights. Unlike involving a second human observer, CAD’s computer-based approach doesn’t add to

the demands on the radiologist or trained observer pool. Regardless of the approach, the ultimate goal

is to enhance disease detection without significantly increasing recall and work-up rates. Furthermore, in

certain scenarios, CAD’s associated automated software tools offer potential workflow efficiencies, though

this aspect lies outside the scope of this overview.

CAD algorithms are developed to search for the same features that a radiologist looks for during case

review[12].

— Applications of CAD System

CAD is applied to diagnose various medical conditions such as breast cancer, lung cancer, colon cancer,

prostate cancer, bone metastases, coronary artery disease, congenital heart defects, pathological brain

detection, Alzheimer’s disease, and diabetic retinopathy[10]..

1.4.1.2 Computer-Aided Detection

— Definition CADx systems perform the characterization of the lesions, for example, the distinction between

benign and malignant tumors.

— Objectifes

CADx systems extract the characteristics of the images and use a classifier to measure the malignancy[13].

The objectives of CADx (computer-aided diagnosis) include improving the accuracy and consistency of

medical diagnoses, reducing the risk of errors, aiding in early disease detection, and enhancing the effi-

ciency of the diagnostic process. Additionally, CADx aims to minimize the subjectivity in interpretation

by providing quantitative and objective analysis of medical images
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1.5 Dataset

1.5.1 Definition

In the field of computer vision, a dataset is a collection of visual data, such as images or videos, that are

used to train and test machine learning models and algorithms. The dataset can include various types of visual

data, such as natural scenes, objects, faces, medical images, etc[14].

Datasets are vital for the development and evaluation of machine learning models in computer vision. They

provide a standardized and diverse set of visual data to assess the accuracy and robustness of different models

or algorithms[14].

1.5.2 Characteristics of Dataset

Size : A large dataset is necessary to train machine learning models that can generalize well to new data.

Diversity : A diverse dataset should contain images or videos that represent various types of objects, scenes,

or situations. Quality : A high-quality dataset should have accurate and consistent annotations or labels, free

of errors and biases. Balance : A balanced dataset should have approximately equal numbers of images or

videos for each class or category. There are various publicly available datasets in computer vision, such as

ImageNet, COCO, CIFAR, and PASCAL VOC, which are commonly used by researchers and practitioners

to develop machine learning models for different applications, including object detection, image segmentation,

facial recognition, and autonomous driving.

1.5.3 Types of Datasets

There are various categories of datasets accessible for varying types of information. These include

— Numerical data sets

A dataset that comprises data expressed in numerical form instead of language is known as a numerical

dataset. Quantitative data is another term for numerical data. The complete collection of quantita-

tive/numerical data is referred to as the numerical dataset. Numerical data is always represented in

numeric values, allowing us to perform mathematical operations on it[14].

— Bivariate Datasets

When a dataset involves two distinct variables and explores the relationship between them, it is known

as a bivariate dataset[14].

— Multivariate Datasets

A dataset that involves multiple variables is referred to as a multivariate dataset. This means that the

dataset includes three or more distinct data types (variables), and each measurement is obtained as a

function of these variables. Put differently, a multivariate dataset is composed of individual data points

that are determined by three or more variables[14].

— Categorical Datasets

Categorical datasets illustrate the attributes or traits of an individual or object. Such datasets are

composed of a categorical variable, also known as a qualitative variable, which can assume only two

values. Therefore, it is referred to as a dichotomous variable. If a categorical variable can take on more

than two possible values, it is termed a polytomous variable. By default, qualitative/categorical variables

are typically assumed to be polytomous unless explicitly stated otherwise[14].
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Example

A person’s gender (male or female)

Marital status (married/unmarried)

— Correlation Datasets

Correlation datasets are collections of values that display some form of interrelationship or association

with each other. Such datasets typically consist of values that are mutually dependent.

Statistically speaking, correlation refers to the relationship between two variables/entities. In some cases,

it may be necessary to predict the correlation between different items, making it important to have a

solid understanding of how correlation operates. Correlation is commonly classified into three distinct

btypesv [14].

1.5.4 Medical Image Datasets

Almost 90 percent of all healthcare data is comprised of images, creating numerous opportunities to develop

computer vision algorithms for healthcare applications. It’s important to mention that medical image data is

primarily produced in radiology departments using imaging technologies such as X-Ray, CT, and MRI scans.

The standard format for storing and sharing diagnostic images in the healthcare industry is DICOM (Digital

Imaging and Communication in Medicine).

1.6 Problematic and Motivations

The emergence of deep learning has revolutionized the fields of computer vision and natural language proces-

sing, and has become a crucial component of artificial intelligence (AI). This has also opened up new possibilities

for developing intelligent healthcare systems. However, while the healthcare industry is rapidly accumulating

vast amounts of imaging data, deep learning algorithms for automated medical image analysis still face signifi-

cant challenges.

One major obstacle is the need for large amounts of labeled data to train deep learning models, which is

expensive and requires specialized expertise. Additionally, medical images differ from natural images in various

ways, such as being in 3D formats and having multiple phases or modalities. Moreover, the incorporation of

prior medical knowledge is often overlooked in the development of deep learning algorithms. In healthcare, the

consequences of errors can be costly, and thus, there is a need to establish robust AI systems for medical image

analysis[15].

Despite these challenges, deep learning has already shown great potential in various aspects of the clinical

workflow, including disease screening, malignancy diagnosis, prognosis prediction, and pathology. With conti-

nued advancements in technology and further research, we can expect to see even more promising applications

of deep learning in healthcare.

1.6.1 Problem of Computer Vision

computer vision, like any other technology, has its own set of problems. Some of the common challenges in

computer vision are :

— Ambiguity

Visual data can be highly ambiguous, and different objects can appear similar to each other.
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— Variability

Visual data can vary greatly in terms of lighting, color, texture, and other factors, making it challenging

for computer vision systems to accurately recognize objects in different contexts.

— Occlusion

Objects in real-world scenarios can be partially or fully occluded by other objects or obstacles, making

it difficult for computer vision systems to detect and recognize them.

— Scale

Objects in visual data can vary in size, and it can be challenging for computer vision systems to recognize

objects at different scales.

— Limited training data

Deep learning models used in computer vision require large amounts of labeled training data, and it can

be challenging to obtain sufficient amounts of high-quality labeled data.

Recently, a new technology called visual Transformer (ViT) has emerged as a promising alternative to

Convolutional Neural Networks (CNNs) in image recognition computer vision tasks. ViT models have shown

to outperform the current state-of-the-art CNNs by almost four times in terms of computational efficiency and

accuracy.

Unlike CNNs, which use pixel arrays as input, ViT splits the input image into visual tokens. It divides the

image into fixed-size patches, correctly embeds each patch, and includes positional embedding as an input to

the transformer encoder. The self-attention layer in ViT allows the model to embed information globally across

the entire image, and to learn the relative location of the image patches to reconstruct the structure of the

image.

While transformers have been widely used in Natural Language Processing (NLP) and have achieved high

success rates, ViT models are now being applied to image recognition tasks with promising results. With its

superior computational efficiency and accuracy, ViT has the potential to improve the performance of automated

medical image analysis and other computer vision applications[16].
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1.7 Conclusion

Despite the ground-breaking progress in artificial intelligent, how to endow deep learning and machine

learning models with reasoning ability remains a formidable challenge for modern computer vision systems.

In this regard, and this chapter We touched on artificial intelligence and the latest advances in it, which

enabled the development of artificial intelligence tasks in computer vision so that The use of Transformers is

revolutionizing computer vision, particularly in the field of medical image analysis where research in this area

is rapidly expanding. However, current Transformer-based approaches are typically applied to medical imaging

problems without significant modifications.
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Chapitre 2

Vision Transformers ViT

2.1 Introduction

Deep neural networks (DNNs) have become a crucial element of modern AI systems, with different types of

networks tailored to specific tasks. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

have been extensively used for processing images and sequential data, respectively. However, transformer, a new

type of neural network, has emerged as a promising alternative that mainly utilizes the self-attention mechanism

to extract intrinsic features, making it suitable for various AI applications. Transformer first achieved significant

improvements in natural language processing (NLP) tasks, where it exhibited strong performance on downstream

tasks without requiring fine-tuning. This breakthrough led researchers to apply transformer to computer vision

(CV) tasks, which traditionally relied on CNNs. Vision transformers, such as ViT, apply pure transformers to

image patch sequences and have shown state-of-the-art performance on multiple image recognition benchmarks.

Besides image classification, transformer has also been utilized to solve other Computer Vision problems, such

as object detection, semantic segmentation, image processing, and video understanding. As a result of its

exceptional performance, transformer-based models are increasingly being proposed to enhance various visual

tasks[17].
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2.2 Visual Transformers ViT Overview

Visual Transformers (ViT), is a novel model used for image processing that utilizes a Transformer-based

architecture on image patches. This process involves dividing an image into patches of equal sizes, embedding

each patch linearly, adding position embeddings, and then feeding the sequence of resulting vectors to a standard

Transformer encoder. To classify the image, a learnable "classification token" is appended to the sequence

following the standard approach.

In recent times, transformers have been applied to medical image analysis for tasks such as disease diagnosis

and other clinical purposes. A study used transformers to distinguish COVID-19 from other types of pneumonia

using CT or X-ray images and other, providing a quick and effective solution to treat COVID-19 patients.

Transformers have also achieved state-of-the-art results in medical image segmentation, detection, and synthesis,

as depicted in Figure 2.1 These findings demonstrate the potential of transformers in advancing medical image

analysis[2].

Figure 2.1 – The development of transformers in medical image analysis. Selected methods are displayed
relating to classification, detection, segmentation, and synthesis applications[2].

And Compared to Convolutional Neural Networks (CNN), Vision Transformer (ViT) has demonstrated

impressive results while using significantly fewer computational resources for pre-training. However, due to its

generally weaker inductive bias, ViT tends to rely more heavily on regularization or data augmentation when

training on smaller datasets than CNN. Originally designed for text-based tasks, ViT is a visual model based on

transformer architecture. It represents an input image as a series of image patches, similar to word embeddings

used for text in transformers, and directly predicts class labels for the image. With sufficient training data, ViT

has shown exceptional performance, outperforming a comparable state-of-the-art CNN with only one-fourth of

the computational resources.

These transformers have high success rates when it comes to NLP models and are now also applied to

images for image recognition tasks. CNN use pixel arrays, whereas ViT splits the input images into visual

tokens. The visual transformer divides an image into fixed-size patches, correctly embeds each of them, and

includes positional embedding as an input to the transformer encoder. Moreover, ViT models outperform CNNs

by almost four times when it comes to computational efficiency and accuracy[18].

2.3 General Architecture of Transformers (Compoments)

Typically, neural models for transducing sequences have an encoder-decoder structure, where the input

sequence of symbols (x1, ..., xn) is first mapped by the encoder to a sequence of continuous representations (z1,

..., zn). Then, given z, the decoder generates the output sequence (y1, ..., ym) one symbol at a time, with the

model being auto-regressive, consuming the previously generated symbols as additional input for generating the

12



next. The Transformer architecture follows this overall structure, with stacked self-attention and point-wise,

fully connected layers used for both the encoder and decoder, illustrated in the left and right halves of Figure

2.2, respectively [3].
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Figure 2.2 – The Transformer - model architecture[3].
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2.3.1 Encoder and Decoder Stacks

Encoder

The architecture of the ViT model consists of a stack of N = 6 identical layers in the encoder. Each layer

is composed of two sub-layers : a multi-head self-attention mechanism and a position-wise fully connected feed-

forward network. To ensure the flow of information through the layers, residual connections are employed around

each of the two sub-layers, followed by layer normalization.

The output of each sub-layer is computed as LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function

implemented by the sub-layer itself. To facilitate these residual connections, all sub-layers in the model, as well

as the embedding layers, produce outputs of dimension dmodel = 512.

Overall, the ViT model uses a transformer-based architecture with multi-head self-attention to embed infor-

mation globally across the image and learn the relative position of image patches for image recognition tasks.

This architecture has shown to be more computationally efficient and accurate than the current state-of-the-art

CNNs for image recognition tasks [3].

Decoder

The decoder in the Transformer model also consists of N = 6 identical layers, just like the encoder. However,

it has three sub-layers in each layer. The first sub-layer is a masked multi-head self-attention mechanism that

prevents positions from attending to subsequent positions. The second sub-layer is a multi-head attention

mechanism that attends over the output of the encoder stack. The third sub-layer is a simple, positionwise fully

connected feed-forward network.

Similar to the encoder, the decoder also uses residual connections and layer normalization. The output

embeddings in the decoder are offset by one position, and the masking ensures that predictions for a position

can depend only on the known outputs at positions less than that position. This architecture enables the decoder

to generate output sequences based on the input sequence and the encoded information from the encoder stack[3].

2.3.2 Attention

In the case of self-attention, the input to the attention mechanism is split into three parts : queries, keys,

and values, which are all derived from the same input sequence. The compatibility function used to compute

the weight assigned to each value is called the dot-product attention, and it computes the dot product between

the query and each key, followed by a softmax function to obtain a probability distribution over the values. The

output of the attention mechanism is then a weighted sum of the values, where the weights are given by the

softmax probabilities[3].

2.3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure)(left). The input consists of queries

and keys of dimension dk, and values of dimension dv. We compute the dot products of the query with all keys,

divide each by
√
dk , and apply a softmax function to obtain the weights on the values.

In practice, we compute the attention function on a set of queries simultaneously, packed together into a

matrix Q. The keys and values are also packed together into matrices K and V . We compute the matrix of

outputs as :

Attention(Q,K, V ) = softmax(
1√
dk

)V (2.1)
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Figure 2.3 – (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention
layers running in parallel[3].

The attention mechanism has two commonly used functions : additive attention and dot-product attention.

Additive attention uses a feed-forward network with a single hidden layer to compute the compatibility function.

While both functions have similar theoretical complexity, dot-product attention is faster and more space-efficient

in practice due to its implementation using highly optimized matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms dot

product attention without scaling for larger values of dk . We suspect that for large values of dk, the dot

products grow large in magnitude, pushing the softmax function into regions where it has extremely small

gradients. To counteract this effect, we scale the dot products by 1√
dk

2.3.2.2 Multi-Head Attention

Rather than using a single attention function with keys, values, and queries of dimension dmodel, it is

advantageous to linearly project them h times using distinct, trained linear projections to dk, dk, and dV

dimensions, respectively. The attention function is then applied independently to each of these projected queries,

keys, and values, resulting in dv-dimensional output values. These values are concatenated and projected once

more to generate the final values, as shown in Figure 2.3 (right) .

Multi-head attention allows the model to jointly attend to information from different representation sub-

spaces at different positions. With a single attention head, averaging inhibits this.

MultiHaed(Q,K, V ) = Concat(head1, ..., headh)
0 (2.2)

where

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (2.3)

Where the projections are parameter matrices

WQ
i ∈ Rdmodel∗dk ,W k

i ∈ Rdmodel∗dk ,WV
i ∈ Rdmodel∗dV andW 0 ∈ Rhdv∗dmodel
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2.3.2.3 Applications of Attention in our Model

The Transformer uses multi-head attention in three different ways :

— In the "encoder-decoder attention" layers of the Transformer model, the queries are generated from the

output of the previous decoder layer, while the memory keys and values are obtained from the output of

the encoder. This setup allows each position in the decoder to attend to all positions in the input sequence,

which is similar to the encoder-decoder attention mechanisms commonly used in sequence-to-sequence

models.

— The encoder in the transformer model contains self-attention layers, where all the queries, keys, and

values come from the same source, which is the output of the previous layer in the encoder. In other

words, each position in the encoder can attend to all positions in the previous layer of the encoder.

— Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all positions

in the decoder up to and including that position. We need to prevent leftward information flow in

the decoder to preserve the auto-regressive property. We implement this inside of scaled dot-product

attention by masking out (setting to −∞) all values in the input of the softmax which correspond to

illegal connections[3]. See Figure 2.3.

2.3.2.4 Position-wise Feed-Forward Networks

In both the encoder and decoder, each layer also contains a feed-forward sub-layer, which is applied to each

position independently and identically. This sub-layer is composed of two linear transformations with a ReLU

activation function applied in between them[3].

FFN(x) = max(0, xW1 + b1)W2b2 (2.4)

While the linear transformations are the same across different positions, they use different parameters from

layer to laye.

2.3.2.5 Embeddings and Softmax

To convert input tokens and output tokens to dmodel dimensional vectors, we use learned embeddings. We

apply a learned linear transformation and softmax function to convert the decoder output to predicted next-

token probabilities. To share weights and reduce the number of parameters, we use the same weight matrix

between the two embedding layers and the pre-softmax linear transformation, We scale the weight matrix by
√
dmodel in the embedding layers[3].

2.3.2.6 Positional Encoding

The Transformer/Attention architecture processes input embeddings in parallel, meaning it neglects the

sequential order of the input sequence. To incorporate the sequence position information, a common approach is

to append a positional vector to the input embeddings, which is referred to as "positional encoding". There are

various options for positional encoding, with one common choice being the use of cosine functions with different

frequencies[3].
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Figure 2.4 – Applications of transformers in medical image analysis[2].

2.4 Transformer application

Transformers have been widely used in medical image analysis. In this section, we first introduce transformer-

based medical image analysis applications, including classification, segmentation, Anomaly Detection, Objects

Detection, Image Compression, Videos Deepfake Detection and Clusters Analysis. We categorize these applica-

tions according to their learning tasks as illustrated in Figure 2.4 .

2.4.1 Image Classification

Image classification with transformers is a relatively new approach in the field of computer vision. Traditio-

nally, convolutional neural networks (CNNs) have been the go-to architecture for image classification tasks, but

transformers have shown promising results in recent years[19].

2.4.1.1 Image Classification Methode

To apply transformers to image classification, the input image is first divided into a set of patches, which

are then processed through a sequence of transformer layers. The transformer layers compute the self-attention

mechanism between all patches, allowing the network to learn long-range dependencies in the image. The final

output of the transformer layers is then passed through a classifier, which outputs the predicted class label.
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2.4.1.2 Image Classification Aim

One of the key benefits of using transformers for image classification is that they can handle variable-sized

inputs, allowing them to process images of different resolutions without the need for cropping or resizing.

Additionally, transformers are capable of modeling global dependencies in the image, which can be useful for

recognizing patterns that span the entire image.

2.4.2 Anomaly Detection

Anomaly detection with transformers refers to the use of transformer-based models for detecting anomalies or

outliers in a given dataset. Transformers are a type of deep neural network architecture that has achieved state-

of-the-art results in natural language processing and other sequence-to-sequence tasks. Recently, transformers

have also been applied to the problem of anomaly detection, with promising results[20].

2.4.3 Object Detection

Object detection is a computer vision task that involves detecting objects within an image and identifying

their location with a bounding box. Transformers, which are a type of deep learning model commonly used in

natural language processing (NLP), can also be adapted for object detection[21].

2.4.3.1 Transformers Application for Object Detection

In ViT, the image is divided into a set of patches, and each patch is treated as a separate token. The tokens

are then fed into the transformer model, which processes them in a sequence. The final output of the transformer

model is a set of embeddings, one for each patch.

To adapt ViT for object detection, a set of learnable parameters are added to the model to predict the

bounding boxes and labels of objects within the image. This is typically done by adding a multi-head self-

attention mechanism to the model, which allows it to attend to different regions of the image when predicting

object locations.

Another approach for using transformers for object detection is to use the DETR (DEtection TRansformer)

model. DETR is a transformer-based architecture that directly predicts object detections without using any

anchor boxes or region proposal networks.

2.4.3.2 Object Detection Aim

Overall, transformers have shown promise for object detection tasks, and they offer several advantages over

traditional object detection models, including the ability to process variable-sized inputs and the ability to

leverage self-attention mechanisms to capture complex spatial relationships between objects in an image.

2.4.4 Image Segmentation

Image segmentation is a computer vision task that involves dividing an image into multiple segments or

regions, each of which corresponds to a different object or part of the image. Transformers are a type of neural

network architecture that have been successfully applied to various natural language processing tasks. However,

they have also been explored for image segmentation tasks.
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2.4.4.1 Image Segmentation Methode

One approach for using transformers for image segmentation is to first convert the input image into a

sequence of smaller patches or tokens. Each patch is then processed by the transformer network, which uses

self-attention to capture long-range dependencies between the patches. Finally, the output of the transformer is

decoded to produce a segmentation mask that assigns a label to each pixel in the image.

2.4.4.2 Image Segmentation Aim

There are several advantages of using transformers for image segmentation, including the ability to handle

variable-sized inputs and the ability to capture global context information. However, there are also some chal-

lenges, such as the need to balance the trade-off between local and global information and the high computational

cost of processing large images.

2.4.5 Image Compresion

Image compression is the process of reducing the size of an image while maintaining its visual quality. One

approach to image compression is using transformers, which are a type of neural network commonly used in

natural language processing tasks, but can also be applied to image processing tasks.

Transformers can be used for image compression by treating an image as a sequence of pixels and applying

the transformer architecture to this sequence. The pixels are flattened into a 1D sequence and fed into the

transformer, which learns to compress the image by extracting the most important features and discarding the

rest.

One common approach for using transformers for image compression is the use of the Vision Transformer

(ViT) architecture, which was originally proposed for image classification. In this approach, the image is divided

into non-overlapping patches, which are then flattened into a sequence and fed into the transformer. The output

of the transformer is then decoded back into an image[22].

2.4.6 Videos Deepfake Detection

Deepfake detection is a crucial task in the field of artificial intelligence and computer vision, especially with

the increasing use of deep learning techniques to create highly realistic synthetic media. Transformers are a

popular deep learning architecture used for various natural language processing tasks, and they can also be

adapted for image and video analysis[23].

2.4.6.1 Problem of Videos Deepfake Detection

Deepfake detection is a complex problem because deepfake videos are created using advanced techniques

that can produce highly realistic and convincing content. Traditional approaches to detecting deepfakes, such

as examining the video’s metadata or analyzing visual artifacts, are often ineffective against sophisticated

deepfakes.

2.4.6.2 Solution

One way that transformers can be used for deepfake detection is by analyzing the spatial and temporal

features of videos. Spatial features refer to the visual information in each frame of the video, such as facial
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expressions and body movements. Temporal features refer to how these spatial features change over time, which

can be important for detecting inconsistencies in the video’s content.

Transformers can be trained to extract spatial and temporal features from videos and then use this infor-

mation to distinguish between real and fake videos. They do this by processing the video frames sequentially,

much like how they process words in a sentence during natural language processing tasks.

To achieve high accuracy in deepfake detection, transformers are often combined with other techniques, such

as contrastive learning, which involves training the model to distinguish between similar and dissimilar pairs of

videos. This helps the model to learn more robust representations of real and fake videos, which can improve

its ability to detect deepfakes.

Overall, using transformers for deepfake detection in videos is a promising area of research that has the

potential to make significant strides in addressing the growing problem of deepfake content online.

2.4.7 Clusters Analysis

Cluster analysis in transformers is a technique that is used to group together similar words or embeddings

within the transformer’s hidden layers. It is a way to gain insights into how the transformer is processing and

representing information.

2.4.8 Cluster Analysis Applications

There are many different applications of cluster analysis in transformers, including :

— Understanding the relationships between different concepts in the input

— Identifying common patterns or themes in the input

— Improving the interpretability of the transformer’s representations

— Identifying potential errors or biases in the model’s representations

2.5 Challenges

Computer vision involves capturing visual information in the form of arrays of pixels, which are then pro-

cessed using convolutions - a deep learning technique commonly used in computer vision. Despite the success

of this approach, there are significant challenges that need to be addressed :[24].

Firstly, not all pixels in an image are equally important. For example, in image classification, foreground

objects are more important than the background, and in segmentation, Brain MRI (s) lessions should be

prioritized over the whole region of interested. However, convolutions treat all image patches equally, which

results in spatial inefficiency in both computation and representation.

Secondly, not all images contain the same concepts. Low-level features likeBrain MRI in all images, making

low-level convolutional filters appropriate. However, high-level features like Brain MRI are specific to certain

images, making the application of high-level filters to all images computationally inefficient. Rarely-used filters

end up consuming significant amounts of computing power, as they are not applicable to all images.

Finally, convolutions struggle to relate spatially-distant concepts. While approaches like increasing kernel

sizes, model depth, and using operations like dilated convolutions, global pooling, and non-local attention layers

have been used to address this issue, they add complexity to the model and computational requirements. Overall,
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while convolutions have been successful in computer vision, addressing these challenges requires moving beyond

the current pixel-convolution paradigm.

2.6 Visual Transformers Models

Visual Transformers are a class of deep learning models that use a self-attention mechanism to process

image data. They were introduced in the paper "An Image Is Worth 16x16 Words : Transformers for Image

Recognition at Scale" by Dosovitskiy et al. in 2021[18].

Visual Transformers are similar in architecture to the popular language model called "Transformer," which

was originally developed for natural language processing. Instead of processing sequences of words like the

Transformer does, Visual Transformers process image patches as sequences of vectors using self-attention.

2.6.1 General Visual Transformer Model Pipeline

The Vision Transformer model consists of the 7 steps

— Split an image into patches (fixed sizes)

— Flatten the image patches

— Create lower-dimensional linear embeddings from these flattened image patches

— Include positional embeddings

— Feed the sequence as an input to a state-of-the-art transformer encoder

— Pre-train the ViT model with image labels, which is then fully supervised on a big dataset

— Fine-tune the downstream dataset for image classification
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Figure 2.5 – Taxonomy of Visual Transformer[4]

2.6.2 Transformer Backbone

— Original Visual Transformer

Drawing inspiration from the remarkable accomplishments of Transformers in the field of Natural Lan-

guage Processing (NLP), several recent technology trends in the area of computer vision tasks have

integrated attention mechanisms with convolution models to enhance the models’ receptive field and

global dependency. While hybrid models of this nature have been explored, Ramachandran et al. have

explored the possibility of completely replacing convolution with attention. They introduced the Stand-

Alone self-attention network (SANet), which has demonstrated superior performance on vision tasks

when compared to the original baseline. In their approach, the authors replaced the spatial convolution

layer (3 × 3 kernel) in each bottleneck block of a ResNet architecture with a locally spatial self-attention

layer, while keeping other structures unchanged from the original ResNet setting. Various ablations have

indicated that the efficacy of the network can be further enhanced by adding positional encodings and a

convolutional stem.

In contrast to the focus on light-scale models, the Vision Transformer (ViT) has explored the effectiveness

of large-scale pre-trained learning using vanilla Transformers. This pioneering work has had a significant

impact on the community. Since vanilla Transformers only accept sequential inputs, the input image

in ViT is split into non-overlapping patches, which are then projected into patch embeddings. A 1D

23



learnable positional encoding is added to the patch embeddings to retain spatial information, and the

joint embeddings are then fed into the encoder, as shown in Figure 5. Similar to BERT, a learned

[class] token is attached to the patch embeddings to aggregate global representation, which serves as the

final output for classification. Additionally, a 2D interpolation complements the pre-trained positional

encoding to maintain patch order when the input images have arbitrary resolutions. By pre-training with

a large-scale private dataset (JFT-300M), ViT has achieved similar or even superior results on multiple

image recognition benchmarks (ImageNet and CIFAR-100) when compared to prevailing CNN methods.

However, the model’s generalization capability tends to deteriorate with limited training data[4].

— Transformer-enhanced CNNs

The Transformer architecture is comprised of two main components : Multi-Head Self-Attention (MHSA)

and Feed-Forward Networks (FFN). While the convolutional layer and MHSA are known to be approxi-

mately equivalent, the Transformer can further improve the effectiveness of MHSA by incorporating skip

connections and FFN. Recently, there have been attempts to integrate the Transformer into Convolu-

tional Neural Networks (CNNs) to enhance representation learning. One such approach is the Vision

Transformer (VT), which decouples semantic concepts for an input image into different channels and

relates them densely through the VT-block of the encoder. This VT-block replaces the last convolution

stage in a CNN model, enhancing its ability for semantic modelling[4].

Unlike previous approaches that directly replace the convolutional layer with an attention structure, a

new conceptual framework has been proposed, which defines successive bottleneck blocks with MHSA as

Bottleneck Transformers (BoTNet) blocks. This approach adopts relative position encoding to mimic the

original Transformer and has demonstrated superior performance compared to most CNN models with

similar parameter settings on the ImageNet benchmark.

— CNN-enhanced Transformer

Inductive bias refers to a set of assumptions about data distribution and solution space that are incor-

porated into machine learning models. Within convolutional neural networks (CNNs), the bias takes the

form of locality and translation invariance, which allow CNNs to process images effectively by taking

advantage of the large covariance within local neighborhoods. However, these strong biases can limit the

upper bound of CNNs when there is sufficient data available. Recent efforts have focused on leveraging

the appropriate CNN bias to enhance the Transformer architecture[4].

One example of such an effort is the Data-efficient image Transformer (DeiT), which aims to reduce

the ViT’s dependence on large datasets. In addition to existing strategies for data augmentation and

regularization, DeiT employs a teacher-student distillation strategy for auxiliary representation learning.

In this approach, the ViT serves as the student model, with a distilled token attached to the patch

embeddings and supervised by pseudo-labels from the teacher model. Surprisingly, extensive experiments

have shown that CNNs serve as better teacher models than Transformers, with the distilled student

Transformer even outperforming its teacher CNN model. This suggests that the teacher CNN transfers

its inductive bias in a soft way to the student Transformer through knowledge distillation. DeiT-B, based

on ViT’s architecture, has achieved a top-1 accuracy of 85.2percent without external data[4].

Other approaches that impose inductive biases on the Transformer architecture include ConViT, which

appends a parallel convolution branch to the vanilla Transformer to impose biases softly. The convolution

branch has a learnable embedding that initially approximates the locality as closely as possible to the
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convolution. The gating parameter is then adjusted to give each attention head the freedom to escape

the locality. CeiT and LocalViT extract the locality by directly adding a depth-wise convolution in the

feed-forward network (FFN)[4].

— Local Attention Enhanced Transformer

ViT’s coarse patchification process overlooks local image information, prompting researchers to propose

various local attention mechanisms to enhance the model’s local feature extraction capabilities. One no-

table approach is the Shifted Windows (Swin) Transformer, which utilizes a shifted window to capture

global and boundary features. Swin employs two consecutive window-wise attention layers to promote

cross-window interactions, similar to how CNNs expand their receptive field. This method reduces com-

putational complexity while achieving 84.2percent accuracy on ImageNet and the latest State of the Art

(SoTA) on multiple dense prediction benchmarks[4].

To capture both patch- and pixel-level information, researchers proposed the Transformer-iNTransformer

(TNT) model, which has two blocks per layer. The inner block models pixel-wise interactions within

each patch, while the outer block captures global information. TNT uses a spatially separable self-

attention mechanism, similar to depth-wise convolution or window-wise TNT, to extract local-global

representations. ViL is another approach that replaces the single class token with a set of local embeddings

(global memory) that interact with their corresponding 2D spatial neighbors using inner attention[4].

— Hierarchical Transformer

ViT’s fixed-resolution columnar structure results in the loss of fine-grained features and significant com-

putational costs. To address this issue, Tokens-to-Token ViT (T2T-ViT) introduces a hierarchical Trans-

former paradigm and utilizes overlapping unfold operations for down-sampling, which incurs high memory

and computation costs. In contrast, Pyramid Vision Transformer (PVT) adopts non-overlapping patch

partitions to reduce feature size and employs a spatial-reduction attention (SRA) layer to further de-

crease computational costs by learning low-resolution key-value pairs. Empirically, PVT performs well

on dense prediction benchmarks that require large inputs and fine-grained features with computational

efficiency. Additionally, PiT and CvT utilize pooling and convolution, respectively, for token downsam-

pling. CvT improves upon PVT’s SRA by replacing the linear layer with a convolutional projection, and

thanks to the convolutional bias, CvT can handle inputs of arbitrary sizes without requiring positional

encodings[4].

— Deep Transformer

Recent studies have shown that increasing the depth of a Transformer model can enhance its learning ca-

pacity. To investigate the scalability of deep Transformer, recent works have employed a deep architecture

and conducted extensive experiments to analyze the cross-patch and cross-layer similarities, as well as the

contribution of residual blocks. However, in deep Transformers, the features from deeper layers tend to be

less representative, and patches are often mapped into indistinguishable latent representations, leading

to attention collapse and patch over-smoothing. To overcome these limitations, current methods propose

solutions from two perspectives[4]. Efficient Class-attention in image Transformers (CaiT) is a two-stage

model that addresses the limitations of the class token in image Transformers. The first stage consists of

multiple self-attention layers without a class token, where a learned diagonal matrix is used to update

channel weights dynamically. This allows for flexibility in adjusting channel weights. In the second stage,

a class token is inserted in the last few class-attention layers with frozen patch embeddings to model

25



global representations. This separation is based on the assumption that the class token is invalid for the

gradient of patch embeddings in the forward pass. With a distillation training strategy, CaiT achieves a

new state-of-the-art (SoTA) on imagenet1k with 86.5percent top-1 accuracy without external data[4].

Despite the attention collapse and oversmoothing problems of deep Transformers, the diversity of the

attention map between different heads is largely preserved. Building on this observation, Deep Vision

Transformer (DeepViT) aggregates different head attention maps and re-generates a new one by using a

linear layer to increase cross-layer feature diversity. Refiner expands the dimension of attention maps using

a linear layer, indirectly increasing the head number, and employs Distributed Local Attention (DLA) to

better model both local and global features. DLA is implemented using a head-wise convolution effecting

on the attention map.

— Transformers with Self-Supervised Learning

Recently, there has been an increasing interest in designing self-supervised learning schemes for visual

Transformers in both generative and discriminative ways, following the success of self-supervised learning

in NLP. Generative models like iGPT directly resize and flatten the image into lower resolution sequences,

which are then fed into a GPT-2 model for auto-regressive pixel prediction. BEiT, on the other hand,

uses dVAE to vectorize the image into discrete visual tokens, which serve as pseudo-labels for pre-training

ViT. For discriminative models, MoCo v3 and DINO are proposed, which extend MoCo and teacher-

student recipe to self-supervised learning, respectively. DINO uses a momentum encoder as a teacher

model and an online encoder as a student model to fit the teacher’s output, connected with a standard

cross-entropy loss. Self-supervised ViT can learn features that are not attainable by supervised models,

particularly for segmentation tasks[4].

2.6.3 Transformer Neck

— Original Transformer

To achieve direct set predictions in detection, two crucial factors are necessary : (1) a loss function

that ensures a one-to-one correspondence between predicted and actual bounding boxes, and (2) an

architecture capable of predicting a group of objects and their relationships in a single iteration.

The DETR model makes N predictions of a fixed size during a single decoding pass, where N is inten-

tionally set to be considerably greater than the usual number of objects present in an image. One of the

major training challenges is evaluating the predicted objects’ (class, location, size) accuracy compared to

the ground truth. Our loss function achieves an ideal bi-partite matching between predicted and actual

objects and optimizes object-specific (bounding box) losses[25].

— Sparser Attention

When using Transformer attention on image feature maps, the primary challenge is that attention must

be paid to every possible spatial location, which can be computationally intensive. To solve this issue,

we propose a deformable attention module inspired by deformable convolution (introduced by Dai et al.,

2017 and Zhu et al., 2019b). This attention module focuses solely on a limited set of key sampling points

surrounding a reference point, regardless of the feature maps’ spatial size. By assigning a small, fixed

number of keys for each query, convergence and feature spatial resolution problems can be alleviated[26].

— Spatial Prior

We introduce a highly effective yet straightforward object detection framework called Efficient DETR.
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It consists of only one decoder layer and three encoder layers, without the cascade structure present

in the decoder. Efficient DETR is composed of two parts : dense and sparse. The dense section makes

predictions on dense features from the encoder. To select a proposal set from the dense predictions, we

use a top-k selection method. The 4-d proposals and their corresponding 256-d features from the decoder

are utilized as the initialization for reference points and object queries. In the sparse section, object

containers, reference points, and object queries initialized with dense priors are given to a one-layer

decoder for further refinement by interacting with the encoder features. The final results are predicted

from the refined object containers. The detection head is shared by both parts. Deformable attention

modules are utilized in all encoder and decoder layers[27].

— Structural Redesign

When it comes to model design, YOLOS largely mirrors the original ViT architecture and is tailored for

object detection in a similar fashion. Moreover, YOLOS can be easily adapted to numerous canonical

Transformer architectures that are available in both NLP and computer vision. This simple configura-

tion is not designed to improve detection performance, but rather to expose the Transformer family’s

characteristics in object detection as impartially as possible[28].

— Pre-trained Model

UP-DETR consists of two procedures : pre-training and fine-tuning. In the pre-training stage, the trans-

formers are trained in an unsupervised manner on a large-scale dataset without any human annotations.

In the fine-tuning stage, the entire model is fine-tuned with labeled data that is identical to the original

DETR on the downstream tasks[29].

— Matching Optimizer

We utilized the DAB-DETR architecture as the foundation for our training approach. Our model fol-

lows the same structure as DAB-DETR, whereby we explicitly represent the decoder queries as box

coordinates. The only variance between our architecture and theirs is the decoder embedding, which

is implemented as a class label embedding to support label denoising. Our primary contribution is the

training method, as illustrated in Fig. 6. Our model comprises a Transformer encoder and a Transformer

decoder, similar to DETR. The encoder utilizes a CNN backbone to extract image features, which are then

processed through the Transformer encoder with positional encodings to obtain refined image features.

On the decoder side, queries are inputted to the decoder to search for objects via cross-attention[30].

2.7 Visual Transformers Models

Visual Transformers, or ViTs, can be seen as an extension of the Transformer architecture that was originally

developed for natural language processing. However, ViTs have been adapted for the image domain with some

modifications to handle image data.

In ViTs, an input image is first divided into a set of image patches or visual tokens, which are then embedded

into a set of encoded vectors with fixed dimensions. The position of each patch in the image is also embedded

along with the encoded vector.

The ViT model then uses a Transformer encoder network to process these embedded visual tokens and learn

representations that capture the relationships between them. This is similar to the Transformer’s processing of

text input, but with modifications to accommodate the visual nature of the input data.
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Overall, while ViTs are an extension of the Transformer architecture, they are specifically designed to handle

image data and utilize modified tokenization and embedding methods to do so. The core architecture of the

Transformer remains largely intact, but with adjustments to suit the unique characteristics of visual input data.
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2.8 Conclusion

Visual Transformers, represented by the ViT model, have proven to be highly effective in computer vision

tasks and have challenged the dominant position of convolutional neural networks (CNNs) in this field. In this

chapter, we have conducted a comprehensive review of over one visual Transformer models that have been applied

to various computer vision tasks, including classification, detection, anomaly detection, and segmentation.

In addition to our review of visual Transformer models, we also discussed the underlying principles of how

these models work in computer vision tasks. Specifically, the ViT model uses multi-head self-attention to process

images without relying on image-specific biases.

The ViT model divides an input image into a series of positional embedding patches, which are then fed

into the transformer encoder. This allows the model to capture both local and global features of the image and

learn representations that are effective for various computer vision tasks.

Furthermore, the ViT model has been shown to achieve higher precision rates on large datasets with reduced

training time compared to traditional convolutional neural networks. Overall, the ViT model represents an exci-

ting advancement in the field of computer vision and has the potential to significantly improve the performance

of various computer vision tasks.
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Chapitre 3

Related Works

3.1 Introduction

Artificial intelligence has become one of the fastest-growing fields in computer science, with a wide range

of applications in various domains, including healthcare and image processing As such, the field has attracted

significant attention from researchers, and a considerable amount of research has been conducted to improve

the performance and efficiency of machine learning models.

In this chapter, we provide an overview of the existing literature related to machine learning. We then review

recent research that has been done on improving the performance and efficiency of machine learning models in

computer vision

Moreover, we explore the current state-of-the-art techniques used in medical image processing, such as neural

networks, transformer.

Overall, this section aims to provide a comprehensive overview of the existing literature on transformer, its

applications in medical image processing, and the state-of-the-art techniques and approaches, dataset to used

and and its degree of success.
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3.2 Binary Classification of MRI Brain Tumors Using CNN Models

Conventionally, identification of objects is mostly based on visual observation or physical sensors [31] ; the

final conclusions are also inaccurate since human visual observation is subjective and infrequent, and observation

times and locations can be limited by objective conditions. The development of a brain tumor occurs in tissues

surrounding the brain or the skull, and it has a significant impact on a person’s life There are two categories of

brain cancer growth benign or malignant tumors. Tumors that develop from outside the brain are known as brain

metastasis tumors. Primary cancers begin within the brain, whereas secondary cancers are caused by tumors

that have spread there from somewhere else [32]. Among the most commonly occurring primary brain tumors

are Gliomas, Meningiomas, and pituitary adenomas. It is common for these tumors to grow unevenly in the

brain, placing pressure on existing tissue [33] . The development of malignant tumors is uneven as compared to

benign tumors, triggering damage to the surrounding tissues [34]. Due to its noninterfering characteristic, MRI is

preferred over other imaging techniques like computed tomography (CT), positron emission tomography (PMT),

and Xrays [35] [36]. Approximately 72,360 people aged 40 and over in the United States will be diagnosed with

a primary brain tumor by 2022. The number of Americans with primary brain tumors is estimated at 700,000.

Benign tumors account for 71% of all cases while malignant tumors account for 29% [37]. Medical methods

such as MRI are used to detect tumors, and biopsies are taken for further examination [38] [37]. By literature,

Convolutional neural network (CNN) is extensively known to classify brain tumors with high performance.

Since CNN is widely used for collecting features randomly without perceiving the local and global features

which causes the overfitting problems, In the current study, we used a convolutional neural network (CNN)

to compare classification from images, initially the pretraining step that used several neuronal network models

applied on several images that belongs the same brain dataset, then tuning the trained model parameters to

the new CNN model and lastly fine-tuning the CNN model to achieve the classification of two types (binary

classification), whether images infected or not (positive or negative). The main experimental results that have

showed the efficiency of the CNN models, which were interpreted by reaching excellent classification performance

and achieving better classification results, in the following table demonstrates the important research papers

using binary classification using brain MRI images based on CNN models.

The main studies working on Brain MRI classification using CNN models table3.1 :

Table 3.1 – The main studies working on Brain MRI classification using CNN models

Research paper Dataset Task Proposed Model Performance Highlight

[JIANG, Yun., 2018][39] MICCAI
BRATS2015

seg CNN 86.30% threshold fil-
ter

[LIU, Dongnan., 2018][40] MICCAI
BRATS2017

seg DCNN 86.50% multi-
dimensional

[S. Yannick,. 2019][41] Brats2018 Binary DenseNet+CNN+SVM 72.20% 3D CNN

[IRSHEIDAT, Suhib.,
2020][38]

Kaggle Binary ACNN 88.25% threshold fil-
ter

[Y. Bhanothu,. 2020][42] MR dataset
consist 3
class

multi
class

R-NN 97.60% Data Aug-
mentation

[RAHMAN, Takowa.,
2023][37]

Kaggle Binary CNN 97.60
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3.3 Transformers for Medical Image Segmentation Tasks

In this section, it exposes a brief review of the main research papers for lesions segmentation from brain MRI

images 3.2. Due to the successful performance of Transformer-based approaches in medical image analysis for

computer aided for detection and computer aided for diagnosis, scientists have focalized on suggesting diverse

ViT-based models for recognizing automatically the presence of the anomalies(such as infections, lesions, cancers,

. . .etc.) [43].

Table 3.2 – The main studies working using ViT models :

References Task Dataset Performance Highlight

|trnsUnet, Chen et al.|[44] ACT_MOS Synapse multi-organ CT 77.48 Claw Unet

|TrancClaw, yao et al.|[45] ACT_MOS Synapse multi-organ CT 78.09 Claw Unet

|LeVit-Unet, Xu et al.|[46] ACT_MOS Synapse multi-organ CT 78.53 Claw Unet

|trnsUnet, Chen et al.|[44] Cardiac seg-
mentation

ACDC 89.71 Claw Unet

|LeVit-Unet, Xu et al.|[46] Cardiac seg-
mentation

ACDC 90.32 Claw Unet

|TransBTSV2, Fu et
al.|[47]

Brain tumor
segmenta-
tion

BraTS 2019 dataset 85.18 -

|CA-GANformer, You et
al.|[48]

Liver Tumor
segmenta-
tion

liTS dataset 73.82 -

|TransFuse, Zhang et
al.|[49]

Prostat seg-
mentation

MSD dataset 76.4 -
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3.4 Lesion Classification of Brain MRI Tumors Using Transformers
(ViT)

Computer-aided diagnostic (CAD) systems are often used by radiologists in order to provide another opinion

and to handle a large number of patients. It has been demonstrated that such emerging software systems are

beneficial diagnostic tools that are capable of detecting and classifying even confusing brain tumors classes.

Additionally, a CAD system could also analyze a large quantity of patients rapidly and efficiently without

requiring any labor concentration or effort [50]. It is possible to use the CAD system alongside brain MRI images

to determine lesion density and shape as well as detect anomalies such as masses and calcifications, which will

result in a more positive prognosis and a higher survival rate. Aside from that, MRI modalities that provide 2D

and 3D brain imaging are available ; however, radiologists struggle to differentiate normal from abnormal tissue

in the image scans. In order to minimize the likelihood of false positives and recall rates, CAD systems must

be developed for accurate classification of MRI scans. With the use of artificial intelligence technology, creating

CAD systems can become simpler, more reliable, and more reliable. AI is capable of generating a million or

more deep high-level features at once without requiring any user input.
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Table 3.3 – Transformers used in medical image classification tasks

modalities Research paper Malady Organ Datasets focus Accuracy

|Park et al.|[51] COVID-19 Lung
CT

- Pretrained back-
bone on CXRs

-

X-ray |Tanzi et al.|[52] Femur frac-
ture

Bone - Unsupervised lear-
ning, compare
CNNs with ViTs

77.0

|Van et al. |[53] Mammography
Chest X-ray

Breast
Lung

CBIS-DDSM
CheXpert

Trans combine
multi-view info

-

|Costa et al|[54] COVID-19 Lung COVIDx ViT with performer 91.0

CT |COVID-VIT|[55] COVID-19 Lung COV19-CT-
DB

use sub-volumes for
3D images

96.0

|MIA-COV19D
|[56]

COVID-19 Lung COV19-CT-
DB

use sub-volumes for
3D images

76.6

|He et al.|[57] Brain Ag Brain BGSP,OASIS-
3,NIH-
PD,IXI

image-level and
patch-level

-

MRI |Kim et al.|[58] Gender Clas-
sification

Brain HCP-Rest lspatio-temporal
attention for brain
graph representa-
tion

88.2

|3DMeT|[59] Knee Carti-
lage Defect

Knee image-level
and patch-
level

Generalize Trans 66.4
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3.5 Conclusion

In this chapter, we have explored the existing literature and related work in the field of medical image

proccessing. The aim was to understand the progress made in utilizing Convolutional Neural Networks (CNN)

and Vision Transformers (ViT) for this task and to identify the gaps and opportunities for further research.

Our review revealed that CNN-based approaches have been widely adopted for image proccessing and have

shown promising results. CNNs have proven effective in capturing local spatial features and have been success-

fully applied to various medical image analysis tasks. They have been utilized in different stages of image of

illnesses such brain tumor, including segmentation, classification, and localization.

Additionally, the emerging Vision Transformer (ViT) architecture has gained attention in the computer

vision community. Although relatively new, ViTs have shown impressive performance on image classification

tasks. However, their application in the context of tumors detection is still limited, and more research is needed

to explore their full potential.

We also observed that most studies focused on individual models, either CNNs or ViTs, and their performance

on specific datasets. There is a lack of comparative studies that directly compare the performance of CNNs and

ViTs for brain tumor detection. Such comparative analyses would provide valuable insights into the strengths

and weaknesses of each approach and could potentially lead to the development of hybrid models that combine

the advantages of both architectures.

In conclusion, the literature review has highlighted the progress and potential of CNNs and ViTs in tumors

detection. While CNNs have been extensively studied and applied, ViTs present an emerging and promising

avenue for exploration. The comparative analysis of these models and the utilization of large-scale datasets are

key areas for future research.
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Chapitre 4

Proposed Methodology

4.1 Introduction

Brain tumors are abnormal growths of cells in the brain that can cause severe health issues and even be

life-threatening. Early detection and accurate diagnosis of brain tumors are crucial for effective treatment and

improved patient outcomes. In recent years, advancements in deep learning techniques have shown promising

results in medical image analysis, particularly in the field of brain tumor detection.

Convolutional Neural Networks (CNN) and visual Transformers (ViT) are two powerful deep learning archi-

tectures that have revolutionized computer vision tasks. By leveraging their ability to learn complex patterns

and features from images, CNNs and ViTs have been successfully applied to various medical image analysis

tasks, including brain tumor detection and classify them.

CNNs are well-known for their effectiveness in capturing local spatial features within an image. They consist

of multiple layers of interconnected neurons that perform convolution operations, pooling, and non-linear acti-

vations. CNNs excel in extracting hierarchical representations of images, allowing them to identify distinctive

features associated with brain tumors.

On the other hand, visual Transformers (ViT) have emerged as a new paradigm for image classification

tasks. Unlike CNNs, ViTs leverage the self-attention mechanism to capture global image patterns and long-

range dependencies. They divide the input image into patches and process them using transformers, which are

originally designed for natural language processing tasks. ViTs have demonstrated impressive performance on

various computer vision benchmarks and are gaining popularity in medical imaging applications.

The combination of CNN and ViT architectures holds great potential for accurate and efficient brain tumor

detection. By combining the strengths of both models, we can leverage CNNs’ ability to capture local features

and ViTs’ capability to capture global context, leading to improved detection accuracy and robustness.

In this chapter, we set two model the first model is CNN and second model is ViT. We will leverage a dataset

of brain images, including both tumor and non-tumor samples, to train and evaluate the model.

The remainder of this chapter is organized as follows : Firstly we provides a detailed overview of the me-

thodology, including the data collection, model architecture, training process, and evaluation metrics. secondly

presents the experimental results and analysis. Finally, we compare the two models and prove the superiority

of one of the models over the other, and determine this from the results obtained through the implementation

of the two models.
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4.2 Proposed Pipeline

Brain tumors are abnormal cell masses that can take different forms and may be either noncancerous (benign)

or cancerous (malignant). These tumors can originate within the brain (primary brain tumors) or spread to

it from other parts of the body (secondary or metastatic brain tumors). The speed of tumor growth and its

location can significantly impact the nervous system’s functionality. The type, size, and location of the brain

tumor determine the available treatment options.

Our objective is to create a deep learning model that utilizes both vision transformers and Convolutional

Neural Networks (CNNs), and evaluate their performance using various metrics For this we Proposed pipeline

the following :

Figure 4.1 – Proposed pipeline.

4.3 Dataset

In this study, we used Brain Tumor Detection dataset, which is considered one of the most comprehensive

and widely used datasets in the literature on Brain cancers diagnosis. The choice of dataset in any machine

learning project is crucial as it has a direct impact on the performance of the models trained. The dataset was

obtained available on Kaggle, which we carefully curated and preprocessed to ensure that they contained only

high-quality of brain MRI images that could provide valuable information about several type of brain tumors.

This was done to ensure that the dataset was focused on images that could help in the detection and diagnosis

of brain cancers. After preprocessing, the dataset consisted of a total of 253 images,with an average image size

of 240 x 240 pixels. which were divided into two categories : consists of 98 normal images (have not tumor), 155

Containing tumor . This Brain Tumor large and diverse dataset provided a rich and representative sample of

brain images, which could help to train and evaluate VIT and CNN models for brain cancer diagnosis. Examples

of datasets Brain MRI Images are shown in Figure 4.2.

4.3.1 Dataset Processing and Splitting

To prepare the dataset for machine learning, we transformed the data into a format that can be easily used

for model training. The images in our dataset underwent the following transformations :

— The first step, We use OpenCV’s imread function to read the image file. It builds the path to the image

by concatenating the path_folder, the /yes or no/ subfolder, and the image_name. The imread function

reads the image as a NumPy array.

— Next, We convert the NumPy matrix representation of the image into a PIL Image object using Image

from array function. It defines the color mode as "RGB", indicating that the image has three color

channels : red, green and blue.
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Figure 4.2 – Example of brain tumor images with different classifications.

— We resize the image to a target size of (240, 240) pixels using the Image Object Resize method. The

image is scaled to fit the specified dimensions while maintaining its aspect ratio.

— After resizing the image, it converts the Image object back to a NumPy array using np.array(image).

The resulting array represents the resized image and is appended to the dataset list.

— Finally, the label is appended to the lab list, indicating that the image does or does not contain a brain

tumor.

In summary, an image with a brain tumor is read using OpenCV, converts it into a PIL Image object, resizes

it to a specific dimension, converts it back into a NumPy array, and appends both the processed image and its

corresponding label to the dataset and lab lists, respectively.

4.4 Evaluation Metrics

The performance metrics we use for evaluation purposes are common metrics employed in medical image clas-

sification studies, including classification accuracy (Training Accuracy and Validation Accuracy), Loss (Training

Loss and Validation Loss).

4.5 Brain Tumor Detection Using CNN and ViT

4.5.1 Architecture CNN

Convolutional Neural Networks (CNNs) are designed specifically for processing and analyzing images as input

data. The architecture of a CNN is tailored to effectively handle the unique characteristics and features present

in images. By leveraging specialized layers and operations, CNNs are optimized to extract and learn meaningful
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patterns, structures, and spatial relationships from image data. This specialized focus on image processing allows

CNNs to excel in image classification tasks and achieve state-of-the-art performance in various computer vision

applications.

Figure 4.3 – An simple CNN architecture
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4.5.1.1 General Overview of a CNN Architecture for Image Classification

The pre-processing of the input images is done, where a set of convolutions using the kernel , in addition to

the latter, the relu process takes place in which every negative number is replaced by zero in order to remove

the complexity of the features, and these multidimensional outputs are considered inputs for the flatten layer

that converts Multiple dimensions into a one dimension (1D) that can be processed by fully connected layers

that are commonly used for classification tasks Figure 4.3.

4.5.1.2 Visualization of CNN Model

In a convolutional neural network (CNN), there are several main layers used to build the network structure,

the figure 4.4 represents a visualization of the CNN model and the changes that occur on the data where the

outputs of each layer are inputs for the next layer where we can explain each of these steps as follows :

Figure 4.4 – Illustration of the treat of the images in a CNN model

— Conv2D :

Conv2D stands for Convolutional 2D. It is the fundamental building block of a CNN. This layer performs

the convolution operation, which involves applying a set of filters to the input data. These filters detect

patterns and features in the input images. The Conv2D layer applies these filters across the spatial

dimensions of the input image, typically in a sliding window fashion, and produces a feature map as

output.

— MaxPooling2D :

MaxPooling2D is a pooling operation commonly used in CNNs to reduce the spatial dimensions (width

and height) of the input feature maps while retaining the most important information. MaxPooling2D

divides the input feature map into non-overlapping rectangular regions and takes the maximum value
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within each region, thereby downsampling the feature map. It helps in reducing the computational

complexity and making the model more robust to variations in the input.

— Flatten :

The Flatten layer is used to convert the multi-dimensional feature maps into a one-dimensional vector.

It essentially flattens the input data, preserving only the spatial structure. This is typically done before

passing the features to a fully connected layer (Dense layer) for classification or further processing.

— Dense :

The Dense layer, also known as a fully connected layer, is a standard layer in neural networks. It connects

every neuron from the previous layer to every neuron in the current layer. In other words, all the inputs

from the previous layer are connected to each neuron in the Dense layer. The Dense layer performs a

linear operation followed by an activation function, allowing the network to learn complex patterns and

make predictions based on the input features.

— Dropout :

Dropout is a regularization technique used to prevent overfitting in neural networks. It randomly sets a

fraction of input units to 0 during training, which helps to reduce the interdependencies between neurons

and forces the network to learn more robust and generalized representations. By dropping out some

neurons during training, Dropout helps in improving the network’s generalization ability and reduces the

risk of overfitting.

These layers are commonly used in CNN architectures to extract and learn features from input data,

reduce spatial dimensions, and perform classification or regression tasks. The specific arrangement and

combination of these layers depend on the problem domain and the desired architecture of the CNN.

4.5.2 ViT Architecture

Figure 4.5 presents an overview of the design architecture of ViT.

Figure 4.5 – Overview of the vision Transformer used in classification
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The ViT model divides the input image into patches. These patches are then converted into a sequence of 1D

patch embeddings. This sequence is passed through the Transformer encoder, where self-attention modules are

employed to calculate a weighted sum of the outputs from each hidden layer, taking into account the relationships

between different patches. By using this approach, Transformers are able to learn global dependencies in the

input images.

4.5.3 Visualization of ViT Model

The Vision Transformer (ViT) module consists of several steps that are involved in processing an input

image and extracting meaningful features. Here are the key steps involved in a typical ViT module As shown

in the figure 4.6 :

Figure 4.6 – Illustration ot the to treat of the images in a ViT model
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— Input Image and Patching

The input image is divided into smaller, non-overlapping patches. Each patch represents a local region

of the image. The size of the patches is typically predetermined.

The patches are flattened and treated as a sequence of vectors, which can be seen as the input tokens

for the subsequent Transformer layers.

— Token Embedding

Each input patch is transformed into a token embedding using an initial linear projection. This projection

maps the patch’s spatial information into a latent vector space.

— Position Embedding : Position embeddings are added to the token embeddings. Position embeddings

capture the relative spatial position information of the patches. They help the model understand the

spatial relationships between the patches.

— Transformer Encoder

— The Transformer encoder consists of multiple layers. Each layer is composed of self-attention mecha-

nisms and feed-forward neural networks.

— Self-Attention : Self-attention allows the model to capture relationships between different patches by

attending to all other patches. It assigns weights to the patches based on their relevance to each other.

— Feed-Forward Networks : Feed-forward neural networks process the outputs of the self-attention layers.

They apply non-linear transformations to the token embeddings to capture more complex patterns

and higher-level features.

— Classification Head

— The output of the last Transformer layer is typically used for classification. It is passed through a

classification head, which consists of one or more fully connected layers and an output layer with the

desired number of classes.

— The classification head transforms the encoded features into class probabilities using activation func-

tions such as softmax.

During training, the parameters of the ViT module are updated iteratively to minimize the loss and improve

the model’s performance on the training data. Fine-tuning involves training the ViT module on a larger dataset

or continuing the training on a specific task to improve its performance.

In summary , By going through these steps, the ViT module can process an input image, extract meaningful

features using self-attention and feed-forward networks, and perform classification tasks by mapping the features

to class probabilities using the classification head.

4.5.4 Models

We employed with pre-trained CNN networks for the classification task, specifically using brain tumor

datasets. We then compared the results obtained from the CNN-based architecture with those from the ViT-
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based architecture .

4.5.5 Fine-tuning Details

We perform a tow-classes classification task of detection tumor (with tumor and no tumor). We use datasets

to 256 images medical for MRI. All experiments is done on the fixed training and testing dataset for comparison

purposes between images Contains tumor and images does not contain tumor by using CNN model and ViT

model and calculates accuracy and loss for (training and validation) task for the models.

4.6 Traind Model

The algorithm figure 4.7 describes the stages of image processing within a CNN model :

44



Figure 4.7 – CNN model classification
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4.6.1 CNN Model Classification

— The Training Phase

These equations represent a forward pass of the CNN model, with the output of each layer serving as

the input for the subsequent layer. Specific activation functions, aggregation processes, and organizing

techniques are applied. We apply this model in the training phase to all training data for a specified

number of times, as it calculates the probability that the input belongs to the positive group by returning

a value between 0 and 1 , to summarize, the output of this model is a probability score indicating the

likelihood of each input sample belonging to the positive or negative class in a binary classification task.

— The Validation Phase

During training, the model will adjust its internal parameters to reduce the difference between the expec-

ted output and the actual labels. The optimization is performed using techniques such as backdiffusion

and gradient ratios. The model will continue to train for a set number of periods, and evaluate its

performance on the validation data set after each epoch.

4.6.2 Visual Transformer Model Classification

The algorithm figure4.8 describes the stages of image processing within a ViT model :

— The Training Phase

During the training phase of the ViT algorithm, the model is trained on a labeled dataset to learn the

patterns and features in the data. The process generally involves the following steps :

Training loop : The training loop consists of iterating through the dataset in batches. For each batch, the

model performs a forward pass through the model, computes the loss between the expected output and the

ground truth labels, and updates the model’s parameters using backpropagation. This is usually done

using the model.train_on_batch() function. Progress Monitor : Optionally, the model prints training

progress after each batch or epoch. This may include display of the current age, batch number, loss and

accuracy.

Iteration : The model repeats the training loop for a set number of periods, allowing the model to learn

from the data repeatedly. And we adjust hyperparameters, such as learning rate and batch size, as needed.

— The Validation Phase

Once the model has been trained, the validation phase is performed to evaluate the model’s performance

on unseen data. This helps assess how well the model generalizes to new examples. The validation phase

typically involves the following steps :

Evaluation : We use the trained model to make predictions on the validation dataset. We calculate loss

and accuracy metrics by comparing the expected output with the ground truth labels. This is usually

done using the model.evaluate() function.

Results presentation : We print or log validation metrics, such as validation loss and accuracy, to evaluate

the performance of the model on the unseen data.

By following this training and validation process, we can iteratively train the ViT model on the trai-

ning dataset and evaluate its performance on the validation dataset. This helps to optimize the model

parameters, adjust the hyperparameters, and ensure that the model generalizes well to new, unseen

examples.
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Figure 4.8 – CNN model classification
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4.7 Results (Validation Model)

We teste the CNNs and ViT models for models to classify brain tumor images into tow categories : no tumor

and with tumor and measure the proportion of the most accurate model in the classification.

These ratios were calculated after entering the training data for the CNN model and the Vit model and

specifying the number of epoch equal to 110, meaning that the entered training data will be traversed 110 times,

and each time the accuracy and loss of the model are calculated on the training data by means of validation

data and labels to calculate validation measures To monitor the progress of the model, and upon completion of

the training, the model is evaluated on the test data set, and we obtained these results

4.7.1 Convolutional Neural Network (CNN) Model

The classification accuracy (Acc) and loss results for different CNN model on the brain tumor dataset are

reported. based on the CNN model has the results following in Table 4.1

Evaluation Model (CNN)

Acc 70.59 %

Loss 2.23 %

Table 4.1 – Results of CNN models

4.7.2 Visual Transformer (ViT) Model

Table 4.2 shows the classification results for ViT model

Evaluation Model (VIT)

Acc 80.39 %

Loss 0.53 %

Table 4.2 – Results of CNN models

*Note : As for these results, they are not fixed, so they can improve more or less according to the extent of

learning and training this model.

4.7.3 Models Evaluation
4.7.3.1 CNN Model

plan The graph shows the results and accuracy and loss measures of a CNN model progression 4.9 :
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Figure 4.9 – CNN model performance evaluation schema

4.7.3.2 ViT Model

plan figure 4.10 The graph shows the results and accuracy and loss measures of a VIT model progression :

Figure 4.10 – ViT model performance evaluation schema

In this evaluation we relied on on two metrics which are training loss and validation loss and the accuracy

of each of them on the data.

— Training Loss

This indicator indicates the suitability and learning of the model on the training data, and it is calculated

by the average of the loss values obtained from the batch.

— Validation Loss

This measure is an evaluation of the efficiency of the model to generalize on other data that has not been

recognized before. It is also an indicator for judging the model whether it is appropriate or inappropriate.

The lower the validation loss percentage, the closer the results are to the expected and correct results.

— Training Accuracy

Training accuracy refers to the extent to which the model improves its learning performance on the

training data assigned to it. During the training process, the model parameters are updated to reduce

training loss and improve its ability to make accurate predictions. As we notice here in the two charts,
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there is synchronization in training accuracy and loss. That is, when the training accuracy increases, the

model becomes more appropriate and correct.

— Validation Accuracy

The validation accuracy index indicates how well the model has learned data that it has not seen before

and how accurate it is in correcting the answer. The purpose of using the validation set is to provide

an unbiased estimate of the model’s performance on unseen data and to assess its ability to generalize

Overfitting refers to the success of the model on training data and its failure on other data that it did not

see Whereas, underfitting refers to a situation where the model fails to capture the underlying patterns

in the data.

4.8 Discussions

The disparities between CNNs and Vision Transformers are numerous and primarily stem from architectural

distinctions, where CNNs are built on a hierarchical structure consisting of convolutional layers followed by

pooling layers, which help capture local features and progressively learn more abstract representations. Vision

Transformers, on the other hand, are based on the self-attention mechanism, where every image patch attends to

all other patches to capture global relationships.. In fact, CNNs yield remarkable outcomes even with smaller-

scale training data compared to the extensive data requirements of Vision Transformers. This divergence in

behavior seems to arise from the existence of certain inductive biases in CNNs, which may be leveraged by these

networks to swiftly comprehend the distinctive aspects of analyzed images. However, these biases also impose

limitations and increase the complexity of understanding global relationships.

On the contrary, Vision Transformers are devoid of these biases, enabling them to capture broader and

comprehensive relationships. Nevertheless, this advantage comes at the expense of more challenging training

in terms of data. Vision Transformers have also demonstrated their efficacy in handling image distortions like

adversarial spots or permutations. However, it is not always prudent to favor one architecture over the other,

as exceptional results have been achieved in numerous computer vision tasks by employing hybrid architectures

that combine convolutional layers and vision adapters.

In addition, the converters have proven their efficiency in computer vision and their ability to overcome CNN

in model accuracy, and in the future they can be highly relied upon in the field of image classification through

their multiple characteristics and their ability to self-attention with multiple heads.

4.9 The Beginning of our Search

First of all, we started from the idea of merging transformers with CNNs to benefit from the properties of

convolutional CNNs while benefiting from the characteristics of transformers with segmenting the patch-like

image and the multi head self attention, the Feed Forward network and apply them on a dataset (Brats19)

composed of 1677 files each file contains 4 diffirent segmentation and the type of image (NII) when we start

with the processing of code in to finish the part of pre-processing and when we start the processing phase we

faced hardware problems (GPU) and complexity problems about the dimensions of processed matrices.

these efforts for more than two months of daily work and finally, we decide to change this idea by preparing

2 models CNN and ViT and compare their performance
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4.10 Conclusion

In this study, we explored the application of Convolutional Neural Networks (CNN) and visual Transformers

(ViT) for brain tumor detection, harnessing the power of deep learning and advanced image analysis techniques.

Our goal was to Ensure the most effective model that can aid in the detection of brain tumors and not to make

mistakes, leading to improved patient outcomes.

Through the implementation of CNN and ViT architectures, we demonstrated the potential of these models

and extract the properties for each model in brain images. By combining the strengths of CNNs and ViTs, we

aimed to enhance the detection accuracy and robustness of our modle.

We utilized a comprehensive dataset of brain images, encompassing both tumor and non-tumor samples,

for training and evaluation. The training process involved feeding the images through the network, optimizing

the model parameters. The model was then evaluated using a separate test dataset, employing metrics such as

accuracy, loss.

Our experimental results showcased promising performance in brain tumor detection using CNN and ViT.

The architecture VIT effectively captured important features and patterns associated with brain tumors, en-

abling accurate predictions. We observed high accuracy and favorable evaluation metrics.

However, it is important to note that there are several challenges and considerations in the field of brain

tumor detection. The availability of large and diverse datasets, ensuring interpretability of the models, and

addressing class imbalance issues are among the key areas for future research.

In conclusion, our study highlights the efficacy of CNN and ViT architectures in brain tumor detection.

We concluded that the results of the ViT model are better and more accurate than the CNN model leading

to improved accuracy and performance. By advancing the field of medical image analysis, particularly in brain

tumor detection, we can to early diagnosis without mistakes, timely interventions, and ultimately, better patient

outcomes.
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Conclusion General

In conclusion, the fields of artificial intelligence, computer vision, convolutional neural networks (CNNs),

and transformers have all made significant contributions to advancing the capabilities of visual data analysis

and processing.

Artificial intelligence has revolutionized various industries by enabling machines to mimic human intelligence

and perform complex tasks. In computer vision, AI techniques have played a crucial role in interpreting and

understanding visual data, allowing machines to recognize objects, detect patterns, and make informed decisions

based on visual information.

CNNs have emerged as a powerful deep learning architecture specifically designed for computer vision tasks.

Their hierarchical structure, featuring convolutional and pooling layers, enables automatic feature extraction

from images, leading to remarkable performance in tasks such as image classification, object detection, and

image segmentation. CNNs have greatly advanced the field of computer vision, providing robust and efficient

solutions for analyzing visual data.

More recently, transformers have gained significant attention in the field of computer vision. Initially popu-

larized in natural language processing, transformers have shown great potential in visual tasks as well. Transfor-

mers excel in capturing long-range dependencies and modeling global context, making them suitable for tasks

like image captioning, image generation, and visual question answering. Their self-attention mechanism allows

them to analyze relationships between different elements in an image, providing a holistic understanding of the

visual content and This is the secret of its superiority over CNN in terms of accuracy. For this in this thesis we

focused on the comparison of pre-trained CNN and visual transformer (ViT) architectures for a brain tumor

classification task using medical MRI datasets.

After training both the CNN and ViT models on the same dataset, the results show that the performance

of the visual transformers surpasses CNNs on various evaluation metrics, including accuracy and loss. This

indicates that the ViT architecture is better suited for the specific challenges of the brain tumor classification

task.

Looking ahead, the integration of CNNs, transformers, and artificial intelligence will continue to drive ad-

vancements in computer vision. The ongoing research and development efforts in these areas hold great promise

for tackling more complex visual tasks, such as video understanding, 3D scene reconstruction, and visual rea-

soning. Additionally, the interpretability and explainability of these models will be critical for building trust

and understanding their decision-making processes, paving the way for responsible and ethical deployment of

computer vision systems.
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