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Abstract— Steady, laminar, natural convection flow in porous 

square enclosure with inclination angle is considered. The 

enclosure is filled with air and subjected to horizontal 

temperature gradient. Darcy-Brinkman-Forchheimer model is 

considered.  Finite volume method is used to solve the 

dimensionless governing equations. The physical problem 

depends on five parameters: Rayleigh number (Ra =103-106), 

Prandtl number (Pr=0.71), Darcy number (Da=0.01), inclination 

angle φ=(0°-227°), porosity of the medium (ɛ=0.7) and the 

aspect ratio of the enclosure (A=1). The main focus of the study 

is on examining the effect of Rayleigh number on fluid flow and 

heat transfer rates. The effect of inclination angle is also 

considered. The results including streamlines, isotherm patterns, 

flow velocity and the average Nusselt number for different values 

of Ra and φ. The obtained results show that the increase of Ra 

leads to enhance heat transfer rate. The fluid particles move with 

greater velocity for higher thermal Rayleigh number. Also φ 

affects the fluid motion and heat transfer in the enclosure. 

Velocity and heat transfer are more important when φ takes the 

value (30°).  

  
Keywords— natural convection, porous medium, inclination 

angle, Darcy-Brinkman-Forchheimer model.  

I. INTRODUCTION  

Natural convection in a fluid saturated porous medium 

occurs in a wide variety of applications such as heat 

exchangers, solar power collectors, grain storage, energy 

efficient drying process, etc. Various modes of convection 

are possible depending on how temperature and 

concentration gradients are oriented relative to each other as 

well as to gravity.  

Mohamad et al.[1] investigated numerically double-

diffusive natural convection in a horizontal enclosure filled 

with saturated porous medium. Brinkman extension of 

Darcy model is adopted. The objective of the work is to 

understand the physics of the flow and to identify the flow 

regimes for thermal and solutal dominated flows. 

Younsi et al.[2] studied numerically the two-dimensional 

double diffusive opposing flow in a porous cavity. The 

Darcy equation including Brinkman-Forchheimer terms to 

account for viscous and inertia effects, is used for 

momentum equation. It is shown that the main effect of the 

porous medium is to reduce the heat and mass transfer as 

well as the flow field when the permeability is reduced. 

Wang et al.[3] analyzed numerically natural convection 

of fluid in an inclined enclosure filled with porous medium 

in a strong magnetic field. The Brinkman-Forchheimer 

extended Darcy model is used. The results show that both 

the magnetic force and the inclination angle have significant 

effect on the flow field and heat transfer in porous medium. 

Sathiyamoorthy et al. [4] reported numerically natural 

convection flow in a square cavity filled with a porous 

matrix. Darcy-Forchheimer model without the inertia term is 

used to simulate the momentum transfer in the enclosure. 

In this work we present a numerical study of laminar 

natural convection in a porous inclined square enclosure. 

This last is filled with air and submitted to horizontal 

temperature gradient. Darcy equation including Brinkman-

Forchheimer terms is considered to account viscous and 

inertia effects. The main focus is on examining the effect of 

Rayleigh number on fluid flow and heat transfer in the 

enclosure. The effect of inclination angle is also considered.  

The rate of heat transfer in the enclosure is measured in 

terms of the average Nusselt number. 

II. PROBLEM GEOMETRY 

The geometry of the problem is shown in Fig.1. The 

heated vertical left side wall  and cooled vertical right side 

wall of the enclosure are maintained at two different but 

uniform temperatures: (Tmax>Tmin). The remaining 

boundaries of the enclosure are impermeable and thermally 

insulated.  

III. BASIC EQUATIONS 

The flow in the enclosure is assumed to be two-

dimensional. All fluid properties are constant. The fluid is 

considered to be incompressible and Newtonien. The 

Boussinesq approximation is applied  )()( 00 1 TTT t −−=  . 

Viscous dissipation, heat generation, and radiation are 

neglected. The governing non-dimensional mass, 

momentum and energy equations are as follows, 

respectively; 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Physical configuration 
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The boundary conditions in the dimensionless form are: 

                          X=0: U=V=0, for 0 ≤ Y ≤ 1                    (5a)                                                                                                                                                                                                       

                           X=0: θ=1,  for    0 ≤ Y ≤ 1                     (5b)                                                                                                                                                   

                        X=1: U=V=0, θ=0, 0 ≤ Y ≤ 1                   (5c)                                                                             

                   Y=0: U=V=0, 
X


=0, for 0 ≤ X ≤ 1              (5d)                                                                              

                    Y=1:  U=V=
Y


=0, for 0 ≤ X ≤ 1                (5e)                                                                                                

The average Nusselt number is: 

Left wall:   Nu   
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IV. NUMERICAL METHODE  

The governing equations (1) to (4) associated with the 

boundary conditions (5) are solved numerically using the 

finite volume method described by Patankar [6]. A uniform 

mesh is used in X and Y directions Fig2. A hybrid scheme 

and first order implicit temporally discretisation are used. 

Because of the nonlinearity of the momentum equations, the 

velocity pressure coupling, and the coupling between the 

flow and the energy equation, an iterative solution is 

necessary. The SIMPLER algorithm and Tri-Diagonal 

Matrix algorithm iteration procedure [6] are used to solve 

the algebraic equations. The iteration process is terminated 

under the following conditions (eqs 7 and 8): 
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Where   represent: U, V and  ; n denotes the iteration 

step. 
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Fig.2. Uniform mesh in X and Y directions 

 

 

In order to obtain a precise results a (60x60) grid was 

selected and used in all the computations Fig 3. A good 

agreement between the obtained results and thows reported 

in literature [5] are observed (Tab.1). 
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Fig.3.  Average Nusselt number for different grid sizes. 

  

TABLE .1. Average Nusselt number for different Raileigh 

number. Pr=0.71 

Ra (present study)   [5] 

103 1.118 1.116 

104 2.251 2.238 

105 4.567 4.509 

 

V. RESULTS AND DISCUSSIONS 

A. Effet of  Rayleigh number  

In the absence of inclination angle (φ=0°), Fig.4 shows 

the effect of Rayleigh number on fluid motion inside the 

enclosure. A single cell rotating in clockwise direction 

appears inside the enclosure. A weak convection is observed 

for low Rayleigh number (Ra=103). While for the remaining 

cases streamlines cover the entire enclosure and the centre 

of each cell is elongated and two secondary vertices appear 

inside it (Ra=106). In addition by moving from Ra=103 to 



106 the maximum values of velocity (Tab2) is more 

important which means natural convection is strength in this 

case.  
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   Fig. 4. Steady state of streamlines: for different values of  

Rayleigh number. φ=0°.  

 

TABLE. 2. Maximum velocity for different values of 

Rayleigh number. φ=0°, Da=0.01. 

 Vitesse/Ra Ra=103 Ra=104 Ra=105 Ra=106 

Vmax 1.175 8.882 41.143 144.61 

 

Also it is observed that the fluid particles move with 

greater velocity for higher Rayleigh number, as mentioned 

in Fig.5 showing the effect of Ra  on mid-height horizontal 

velocity profiles. The velocity peaks especially near the 

horizontal walls are more important for high Ra. 
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Fig. 5.  Axial velocity U at X=0.5 for different values of Rayleigh 

number. φ=0°, Da=0.01. 

 

The effect of Rayleigh number on thermal field is 

illustrated in Fig.6. The fluid rises along the hot wall and 

falls along the right cold wall. Thermal gradients are very 

important and isotherms are crowded around the vertical 

walls for high Rayleigh number. For low Ra the isotherms 

shown in Fig.6 are almost parallel to the vertical walls, 

indicating that most of the heat transfer is by heat 

conduction.  For high (Ra= 106) there is a temperature 

stratification in the vertical direction and the thermal 

boundary layer is well established along the side walls 

indicating the dominant heat transfer mechanism.  

The rate of heat transfer across the cavity is obtained by 

evaluating the average Nusselt number at the cavity walls. 

Fig.7 presents the effect of Rayleigh number on Nu   : It is 

clear from this figure that the average Nusselt number is 

increasing with Rayleigh number. For low Ra (Ra=103), 

heat transfer is dominated by diffusion mode Nu =1.  
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   Fig. 6. Steady state of isotherms for different values of thermal 

Rayleigh number. 
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Fig.7. Average Nusselt number versus time for different Rayleigh 

number. 



B. Effets de l’angle d’inclinaison φ 

 

In order to show the effect of inclination angle of the 

porous enclosure on natural convection, we have selected 

the following control parameter: φ=0° to 270° and Ra=105. 

Figs 8, 9 and 10 show the effect of φ on fluid motion, 

isotherm lines and heat transfer rates. The maximum 

velocity in the flow and the average Nusselt number are the 

greatest in the case φ=30°. They are less important in the 

case φ=270°. For φ=90° and φ=270° the enclosure is heated 

respectively in the lower horizontal wall and the top 

horizontal wall. In the first case the flow structure is 

bicellular, where as in the second case we note that no flow 

in the enclosure and the fluid is stratified in the vertical 

direction. 
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         φ=120°    Vmax= 42.82            φ=210° Vmax=26.20       
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          φ=225°   Vmax=16.62           φ=270° Vmax= 0.0  .    

Fig.8. : Steady state of streamlines: for different values of   φ. 
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          φ=45°         Nu  =3.76        φ=90°        Nu  =2.88 
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Fig. 9 : Régime stationnaire des isothermes pour différentes 

valeurs de φ. 
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Fig.10. Average Nusselt number versus time for different 

inclination angle. 

 

VI. CONCLUSION 

 

A numerical study of natural convection was employed 

to analyze the flow and heat transfer in a square porous 

enclosure. Rayleigh number and inclination angle have a 

noticeable effect on fluid motion and heat transfer rate in the 

enclosure. The following conclusions are summarized: 

• In case (φ=0) the increase of Rayleigh number, 

leads to increase flow convection and heat transfer 

rates. For low Rayleigh number heat transfer is 

dominated by diffusion mode 

• In case (φ=/=0) and for high Rayleigh number 

(Ra= 105), the angle φ=30 gives the highest 

velocity flow and the highest heat transfer rate. In 

contrast the angle φ=270 isotherms are parallel to 

the active walls. This indicates the stratification of 

the thermal field and heat conduction is dominated 

in the enclosure.  
 

Nomenclature 

A aspect ratio, H/L  

Da            Darcy number, K/H2  

K              medium permeability. 

Nu  average Nusselt number. 

P dimensionless pressure, p/(α/H)2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr Prandtl number of the fluid, υ/α 

Ra  thermal Rayleigh number, gβt H3∆T/υα 

t  dimensionless time, t*/(H2/ α) 

 

U,V  dimensionless velocity components, u/(α/H), v/ 

(α/H)  

X, Y non-dimensional cartesian coordinates, x/H, y/H 

 

Greek symbols 

ɛ               medium porosity 

φ               inclnation angle 

θ non-dimensional temperature, (T-Tmin)/∆T 

ψ non-dimensional stream function, U= ψ/ Y 

∆T temperature difference, (Tmax - Tmin)  
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