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GENERAL NOTATION
� R The set of real numbers.

� R+ The set of positive real numbers.

� Rn An n-dimensional real vector space constructed over the field of reals.

� N Set of natural numbers.

� C The set of complex numbers.

� [a, b) Semi-open interval in R extremities a and b.

� C = C(K,F ) Set of continuous functions from K to F .

� Cn = Cn([a, b]) Function space n-time continuously differentiable in [a, b].

� D(U) Operator’s domain U .

� | . | The absolute value of a real number or modulus of a complex number.

� Γ(.) Euler’s gamma function.

� B(., .) Beta function.

� Eα,β (, ) Mittag-Leffler Function.

� Iα Integration of ordre α.

�
CDα Caputo derivative of order α.

�
RLDα Riemann-Liouville derivative of order α.

� LT Laplas transformation.

� α(.) compactness measure.
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Introduction

The theory of differential and integral operators of non-integer order (fractional or-

der), and in particular that of differential equations associated with such operators, is of

different nature than in the ordinary case. Even though the first steps of the theory itself

date back to the first half of the nineteenth century, the subject only really came to life

over the last few decades.

”In the letters to J. Wallis and J. Bernulli (in 1697) Leibniz mentioned the possible

approach to fractional-order differentiation in that sense, that for non-integer values of n

the definition could be the following:

dnemx

dxn
= mnemx

Euler suggested to use this relationship also for negative or non-integer (rational) values

of n, for example dm/nx
dxm/n

Taking m = 1 and n = 1
2
, Euler obtained :

d1/2x

dx1/2
=

√
4x

π

(
=

2√
π
x1/2

)

” [11]

In the past sixty years, the fractional calculus as a main tool in the study of fractional

order differential equations, has played a very important role in various fields such as

physics, chemistry, mechanics, electricity, biology, economics, control theory, signal and

image processing, biophysics, aerodynamics, experimental data processing, etc. There

are many works on the existence, uniqueness and qualitative behavior of solutions of frac-
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tional differential equations. For more details on this subject, we refer to the monograph

of Kilbas et al [5] . So far the theory of initial value problems associated with fractional

differential equations is quite developed when the initial values are taken at the end-

points of the definition interval of the derivative. In the theory of ordinary differential

equations the position of the point of the initial value in the interval of definition does

not play a determining role. But in the fractional case the situation is fundamentally dif-

ferent. It is this aspect of the theory that has motivated the study presented in this thesis.

Here is an example that illustrates our topic (see [1] ). Consider the following two initial

value problems of fractional order,

(P1)


cDα

0 y1(x) = x2, x ≥ 1 ∈ [0 , 2[

y1 (1) = 2
Γ(3+α)

and

(P2)


cDα

1 y2(x) = x2, x ≥ 1 ∈ [0 , 2[

y2 (1) = 2
Γ(3+α)

where α ∈]0 , 1[. It is well known that the solutions are given by


y1(t) = y1(0) +

1

Γ(α)

∫ t

0

(t− x)α−1x2dx, t ≥ 1 ∈ [0 , 2[

where, y1(0) = 2
Γ(3+α)

− 1

Γ(α)

∫ 1

0

(1− x)α−1x2dx

and

y2(t) =
2

Γ(3 + α)
+

1

Γ(α)

∫ t

1

(t− x)α−1x2dx, t ≥ 1 ∈ [1 , 2[.

Thus, by a direct computation using integration by parts, we should end up with

y1(t) =
2t2+α

Γ(3 + α)
,

and

y2(t) =
2

Γ(3 + α)
+

(t− 1)α

Γ(1 + α)
+

2(t− 1)1+α

Γ(2 + α)
+

2(t− 1)2+α

Γ(3 + α)
.
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A verification by a simple numerical computation (take for example α = 0, 5) shows that

the solutions y1 and y2 are different on the interval [1 , 2]. This shows, contrary to or-

dinary differential problems, that the position of the initial value point is fundamentally

determinant of the solution when the order of the differential equation is not an integer.

Presentation of the thesis

This thesis is broken down into three chapters:

Chapter 1 an introduction to the theory of special function, the Gamma, Beta and

mittag-Luffer function, which play the most important role in the theory of fractional

derivatives and fractional differential equations, we recall the different fixed point theo-

rems, and some results of existence and uniqueness for initial value problems, and existence

and uniqueness for the Caputo Problem.

Chapter 2 in this chapter we discuss the Cauchy problem of fractional ordinary differen-

tial equations in Banach spaces under hypotheses based on Carathéodory condition. The

tools used include some classical and modern nonlinear analysis methods such as fixed

point theory, measure of noncompactness method, topological degree method and Picard

operators technique, etc.

Chapter 3 We present the results of existence and uniqueness of fractional differential

equation with inner initial value, with the Caputo derivative.



Chapter 1

Introduction to fractional calculus

1.1 Special functions

1.1.1 Euler’s Function

Gamma Function

We start by considering the Gamma function, or second order Euler integral, denoted

Γ(.), Function Gamma (Γ) is defined as (see [3] [4] [6]) :

Γ(p) =
∫∞

0
e−xxp−1dx

This integral converges in the right half of the complex plane Re(p) ¿ 0.

Some properties of Gamma function:

The gamma function is that it satisfies the following properties:

1. Γ(p+ 1) = pΓ(p)

2. The following relations are also valid:

Γ(p+ n) = (p+ n− 1)...(p+ 1)pΓ(p)

In particular : Γ(1) = 1, we deduce that: Γ(n+ 1) = n!
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3. Γ(p) =
Γ(p+ 1)

p

4. For p > 1 :

p+ 1

Γ(p+ 1)
=
p+ 1

pΓ(p)
<

2

Γ(p)

5. The following particular values for Γ function :

Γ(
1

2
) =
√
π

Γ(0+) = +∞

Γ(n+
1

2
) =

(2n!)

22nn!

√
π,∀n ∈ N

Proof (of the 1st property)

Γ(p+ 1) =

∫ ∞
0

e−xxpdx = −
[
e−xxp

]∞
0

+ p

∫ ∞
0

e−xxp−1dx = pΓ(p)

The graph of Gamma function :

Figure 1.1: Gamma Function
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Beta Function

The Beta function, or the first order Euler function, can be defined as (see [3] [4] [6]):

B(p, q) =
∫ 1

0
xp−1(1− x)q−1dx

where Re(p) > 0 and Re(q) > 0.

Proposition (see [?])

The relation between Beta Function and Gamma Function gives by :

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
(1.1)

Re(p) > 0, R(eq) > 0.

Properties [4]

In the following we will enumerate the basic properties of the Beta function:

� For every p > 0 and q > 0, we have:

B(p, q) = B(q, p)

� For every p > 0 and q > 1, the Beta function B satisfies the property:

B(p, q) =
q − 1

p+ q − 1
B(p, q − 1)

� For every p > 0, and for n ∈ N :

B(p, n) = B(n, p) =
1 · 2 · 3 . . . (n− 1)

p(p+ 1) . . . (p+ n)

and also:

B(p, 1) =
1

p
.
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1.1.2 Mittag-Leffer function

In this section we introduce the one- and two-parameter Mittag-Leffler functions, denoted

as Eα() and Eα,β(), respectively. The one-parameter Mittag-Leffler function (Eα), is defined

as (see [3] [4] [6]) :

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
Re(α) > 0.

For particular values of α = 1 :

E1(z) = exp(z)

The two parameter Mittag-Leffer function E(α,β), is defined as:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
Re(α) > 0, Re(β) > 0, β ∈ C

The graph of Mittag-Leffer function:

Figure 1.2: Mittag-Leffer function

1.2 Fractional Integrals and Derivatives

1.2.1 Riemann-Liouville Integrals

Definition

Let n ∈ R+. the operator Jna , defined on L1 [0, 1]

Jna f(x) :=
1

Γ(n)

∫ x

a

(x− t)n−1f(t)dt (1.2)
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for a ≤ x ≤ b, is called fractional the Riemann-Liouville fractional integral of order n.

For n = 0, we set J0
a := I, the identity operator.

Theorem [6]

Let f ∈ L1 [a, b] and n > 0. The the integral Jna f(x) exists for almost every x ∈ [a, b].

Moreover, the function Jna f(x) itself is also an element of L1 [a, b].

Theorem

Let m,n ≥ 0 and φ ∈ L1 [a, b] , Then

Jma J
n
a φ = Jm+n

a φ (1.3)

holds almost everywhere on [a, b], If additionally φ ∈ C [a, b] or m + n ≥ 1, Then the

identity holds everwhere on [a, b].

Example

The Riemann-Liouville integral of order n of the function : f(x) = (x− a)p

Jna (x− a)m =
1

Γ(α)

∫ x

a

(x− t)n−1(x− a)pdt

we put : t = a+ s(x− a)

Ina (x− a)m =
1

Γ(α)
(x− a)p+n

∫ 1

0

(1− s)n−1spds =
1

Γ(α)
(x− a)p+nB(p+ 1, n)

The proposition (1.1) gives:

Ina (x− a)p =
Γ(p+ 1)

Γ(p+ n+ 1)
(x− a)p+n
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1.2.2 Fractional Derivatives

Riemann-Liouville Derivative:

Let f be an integrable function f [a, b]→ R.

Definition [3]

Let n ∈ R+ and m = [n]. The operator Dn
a , defined by

Dn
af := DmJm−na f (1.4)

is called the Riemann-Liouville fractional differential operator of order n.

For n=0, we set D0
a = I, the identity operator.

Example

1. Let f(x) = (x− α)p, with p > −1, For α ≥ 0 and n− 1 ≤ α ≤ n

Dα
a f(x) = Dn−αf(x) =

Γ(p+ 1)

Γ(p+ n− α + 1)
Dn(x− a)n−α+p

Then, for (α− p) ∈ {1, 2, ...n} : Dα
a (x− a)α−j, j ∈ {1, 2, .., n}

2. In particular, if p = 0 and α > 0, the Reimann-Liouville fractional derivative of

constant function f(x) = C is not zero, its value:

Dα
aC =

C(x− α)−α

Γ(1− α)

Proposition

Let α, β > 0, such that α ∈ ]n− 1, n[ , β ∈ ]m− 1,m[, Then :

1 For all t ∈ [a, b], f ∈ L1 [a, b].

Dα
a (Iαa f(t)) = f(t) (1.5)
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2 If 0 < α ≤ β, then for all f ∈ L1 [a, b]:

(Dβ
a (Dα

a f))(x) = (Iα−βf)(x) (1.6)

3 If 0 < α ≤ β, and if the fractional derivative exists, then:

Dβ
a (Iαf)(x) = (Dβ−α

a f)(x) (1.7)

4

[Iαa (Dα
a f)] (x) = f(x)− Σm−1

j=0

(x− 1)j−m+α

Γ(j −m+ α + 1)
{ lim
x−→a+

[
(
d

x
)jIm−αa f

]
(x)} (1.8)

Caputo Derivative

Definition: [3]

Let α > 0, n = [α]. The Caputo derivative operator of order α is defined as:

aD
α
t f(t) =

1

Γ(n− α)

∫ t
a
f (n)(u)(t− u)n−α−1du

For α = 0 we introduce the notation aD
α
t f(t) = Dαf(t)



1.2 Fractional Integrals and Derivatives 13

Example: [7]

f(x) = (x− α)β such that β > 0

1. if β ∈ {1, 2, 3...n− 1} then:

CDα
a f(x) = 0

2. If β > n− 1 then:

CDα
a (x− α)β =

Γ(β + 1)

Γ(β + 1− α)
(x− α)β−α

In particular, if f is constat over [a, b] then:

CDα
a f(x) = 0

Proposition:

Caputo fractional derivatives verify these properties:

1. CDα
a [Iαa f ] = f

2. If CDα
a f = 0 then f(x) = Σn−1

j=0 cj(x− a)j, such that cj ∈ R.

3. Iαa
[
CDα

a f
]

(x) = f(x)− Σn−1
j=0

(x− a)j

j!
f (j)(a)

Lemma [3]

Let f be a continue function over [a, b] et α > 0.

limx−→a+(Iαa f)(x) = 0

Proof

| (Iαa f)(x) |≤ 1

Γ(α)

∫ x
a

(x− α)α−1 | f(t) | dt

≤ ‖ f ‖∞
Γ(α)

∫ x
a

(x− a)α−1dt

≤ ‖ f ‖∞
Γ(α + 1)

(x− a)α
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Corollary [4]

If 0 < α < 1 and f of class C1 then

(Iαa ◦R Dα
a )f = f and (CDα

a ◦ Iαa )f = f

Corollary

If α ≤ 0, β ≤ 1 with α + β ≤ 1, f of class C1 then

(CDα
a ◦C Dβ

a )f = (CDα+β
a )f = (CDβ

a ◦C Dα
a )f

Proof

It is easy to see that

(CDα
a ◦C Dα

a )f = (I1−α
a ◦ d

dx
◦ I1−β

a ◦ d

dx
)f

= (I1−α−β
a ◦ Iβa ◦

d

dx︸ ︷︷ ︸ ◦I1−β
a ◦ d

dx
)f

(I1−α−β
a ◦ CD1−β

a ◦ I1−β
a︸ ︷︷ ︸ ◦ ddx)f

= (I1−α−β
a ◦ d

dx
)f

=C Dα+β
a f.

1.2.3 Caputo’s Approach

It turns out that the Riemann–Liouville derivatives have certain disadvantages when

trying to model real-world phenomena with fractional differential equations. We shall

therefore now discuss a modified concept of a fractional derivative. As we will see below

when comparing the two ideas, this second one seems to be better suited to such tasks.

[4]

lemma [7]

Let α ≥ 0, n = [α] + 1, if f has (n− 1) derivatives on a, and if RDα
a exists, then:

(CDα
a f)(x) =R Dα

a

[
f(x)− Σn−1

k=0

f (k)(a)

k!
(x− a)k

]
almost everywhere in [a, b] .
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Proof

According to the definition we have:

RDα
a

[
f(x)− Σn−1

k=0

f (k)(a)

k!
(x− a)k

]
=R DnIn−αa

[
f(x)− Σn−1

k=0

f (k)(a)

k!
(x− a)k

]
=

dn

dxn
∫ x
a

(x− t)n−α−1

Γ(n− α)

[
f(t)− Σn−1

k=0

f (k)(a)

k!
(t− a)k

]
dt

Using integration by part we get :

In−αa

[
f(x)− Σn−1

k=0

f (k)(a)

k!
(x− a)k

]
=
∫ x
a

(x− t)n−α−1

Γ(n− α)

[
f(t)− Σn−1

k=0

f (k)(a)

k!
(t− a)kdt

]
dt

= In−α+1
a D

[
f(x)− Σn−1

k=0

f (k)(a)

k
(x− a)k

]
In the same way for n− 1 times:

In−αa

[
f(x)− Σn−1

k=0

f (k)(a)

k!
(x− a)k

]
= In−α+n

a Dn

[
f(x)− Σn−n

k=0

f (k)(a)

k!
(x− a)k

]
= Ina I

n−α+1
a Dn

[
f(x)− Σn−1

k=0

f (k)(a)

(x− a)k

]
.

Such that Σn−1
k=0

f (k)(a)

k!
(x− a)k is a polynomial of degree n− 1, then:

In−αa

[
f(x)− Σn−1

k=0

fk(a)

k!
(x− a)k

]
= Ina I

n−α+1
a Dnf(x).

RDα
a

[
f(x)− Σn−1

k=0

f (k)(a)

k!
(x− a)k

]
= DnIna I

n−α+1
a Dnf(x)

= In−α+1Dnf(x)

= (CDα
a f)(x)

Almost wherever on [a, b] .

1.3 Introduction to The Fractional Differential Equa-

tions:

1.3.1 Fixed Point Theorems:

The proofs of various existence and uniqueness theorems throughout this text have been

based on classical theorems asserting existence or uniqueness of fixed points of certain

operators.

The first of these theorems is the following generalization of Banach’s fixed point theorem.
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Theorem (Weissinger’s Fixed Point Theorem):[6]

Assume (U, d) to be a nonempty complete metric space, and let αj ≥ 0 for every j ∈ N

and such that Σ∞j=0αj converges. Furthermore, let the mapping A : U −→ U satisfy the

inequality :

d(Aju,Ajv) ≤ αjd(u, v)

for every j ∈ N and every u, v ∈ U . Then, A has a uniquely determined fixed point u∗.

Moreover, for any u0 ∈ U , the sequence (Aju0)∞j=1 converges to this fixed point u∗.

An immediate consequence is

Corollary (Banach’s Fixed Point Theorem):[6]

Assume (U, d) to be a nonempty complete metric space, let 0 ≤ α < 1, and let the

mapping A : U −→ U satisfy the inequality

d(Au,Av) ≤ αd(u, v)

for every u, v ∈ U . Then, A has a uniquely determined fixed point u∗. Furthermore, for

any u0 ∈ U , the sequence (Aju0)∞j=1 converges to this fixed point u∗.

Moreover we also used a slightly different result that asserts only the existence but not the

uniqueness of a fixed point. Here we may work with weaker assumptions on the operator

in question.

Theorem (Schauder’s Fixed Point Theorem):[6]

Let (E, d) be a complete metric space, let U be a closed convex subset of E, and let

A : U −→ U be a mapping such that the set Au : u ∈ U is relatively compact in E. Then

A has at least one fixed point.

Definition

Let (E, d) be a metric space and F ⊆ E. The set F is called relatively compact in E if

the closure of F is a compact subset of E.
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Theorem (Arzel‘a–Ascoli)[7]

Let F ⊆ C [a, b] for some a < b, and assume the sets to be equipped with the Chebyshev

norm. Then, F is relatively compact in C [a, b] if F is equicontinuous (i.e. for every ε > 0

there exists some δ > 0 such that for all f ∈ F and all x, x∗ ∈ [a, b] with | x− x∗ |< δ we

have | f(x)f(x∗) |< ε) and uniformly bounded (i.e. there exists a constant C > 0 such

that ‖ f ‖∞≤ 0 for every f ∈ F ).

Definition (Chebyshev Norm) [6]

The Chebyshev norm on a set S is:

‖ f ‖∞= {|f(x)|, x ∈ S}

where Supremum (sup) denotes the supremum.

1.3.2 The Existence and Uniqueness Theorem for Initial Value

Problems

Definition [6]

Let α > 0, α /∈ N, n = [α] + 1, and f : A ⊂ R2 −→ R then

RDαu(x) = f(x, u(x))

with the conditions:

RDα−ku(0) = bk (k = 1, 2, ..., n− 1) limz−→0+I
n−αu(z) = bn

called also Riemann–Liouville FDE.

Definition [6]

Let the FDE

CDαu(x) = f(x, u(x))
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with the initial conditional

uk(0) = bk (k = 0, 1, .., n− 1)

Called also Caputo FDE.

Lemma [6]

Let u(t) be a function with continuous derivative in the interval Ih(0) = [0, h} with values

in [u0η, u0 + η], then y(t) satisfies the Caputo type

Dαu(t) = f(t, u(t)) 0 < α ≤ 1 t > 0

u(0) = u0

if and only if it satisfies the Voltera integral,

u(t) = u0 +
1

Γ(α)

∫ t
0
(t− x)α−1f(x, u(x))dx

Proof (see [6])

Let L[u(t)] = U be the LT of u(t). We have

sαU − sα−1u0 = L [f(t, u(t))]

U =
u0

s
+

1

sα
L [f(t, u(t))]

u(t) = u0 +
1

Γ(α)

∫ t
0
(t− x)α−1f(x, u(x))dx

Lemma (The Weierstrass Test) [6]

Suppose that {fn(t)} is a sequence of real functions defined on a set A, and there is a

sequence of positive numbers {Rn} satisfying:

∀n > 1 ∀f ∈ A, |fn(t)| ≤ Rn, Σ∞n=1Rn <∞

Then the series Σ∞n=1fn(t) is convergent.



1.3 Introduction to The Fractional Differential Equations: 19

1.3.3 Existence and Uniqueness for the Caputo Problem [6]

Theorem

Let a Caputo FDE be

Dαu(t) = f(t, u(t)) 0 < α ≤ 1, t > 0

with the initial condition: u(0) = u0

We consider the domain: D = [0, η]× [u0η, u0 + η]

on which f satisfies:

� f(t, u) is continuous.

� |f(t, u)| < M , where M = max(t,u)∈D|f(t, u)|, and Maximum (max) denotes the

maximum function.

� f(t, u) satisfy in D the Lipschitz condition in u if there is a constant K such that:

|f(t, u2)f(t, u1)| ≤ K|u2u1|

Then it exists δ > 0 and a function u(t) ∈ C[0, η] unique for

δ = min{η,
(
ηΓ(α + 1)

M

) 1
α

}

where Minimum (min) denotes the minimum function.

Remark

In order to prove the existence of the solution we can introduce the set:

U = {u ∈ C [0, η] : ‖uu0‖ ≤ η}

and an operator A:

Au(t) = u0 +
1

Γ(α)

∫ t
0
(ts)α−1f(s, u(s))ds
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where A has a fixed point, and U is a closed and convex subset of all continuous functions

on [0, η] equipped with Chebyshev norm.

Generally:

u(t) = Σn
j=0

bj
Γ(α− j + 1)

(t− a)α−j +
1

Γ(α)

∫ t
0

f(s, u(s))

(ts)1−α ds

where t > 0, n1 ≤ α < n.

The technique used for proving the existence solution of the Voltera equation is often the

successive approximation:

u0(t) = Σn
k=1

bk
Γ(α− k + 1)

tα−k

ui(t) = u0(t) +
1

Γ(α)

∫ t
0
(t− τ)α−1f(τ, ui−1(τ))dτ i = 1, 2..

u(t) = limi−→∞Ui(t)

Proof (see [6] )

Stability

Balance point

We consider the autonomous system described by:

dx

dt
= f(x), x ∈ Rn

f of class C1.

The notion of the balance point is the essential notion in the study of stability.

Definition

xε is a balance point if :

limt−→∞x(t) = xε

xε verify f(xε)=0
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The stability with Caputo Derivative

Matignon studied the following differential system, involving the fractional derivative of

Caputo

CDα
0 x(t) = Ax(t)

With the initial condition :

x(0) = x0 = (x10 , x20 , ..., xn0)
T such that x = (x1, x2...xn) , α ∈ (0, 1) and A ∈ Rp × Rn.

Definition

The autonomous system would be:

(a) Stable if for all x0, exists ε > 0 such that ‖ x(t) ‖≤ ε for all t > 0.

(b) asymptotically stable if :

limt−→∞ ‖ x(t) ‖= 0

Theorem

The autonomous system is:

� asymptotically stable if |arg(λ(A))| > απ

2

� stable if asymptotically stable, or those eigenvalues of the matrix which satisfy

|arg(λ(A))| > απ

2
have geometric multiplicity.

Such that |arg(λ(A))| denotes arguments of the eigenvalues of the square matrix A.



Chapter 2

The Ordinary Fractional Differential

Equation

2.1 Cauchy Problems via Measure of Noncompact-

ness Method

In this Section, we assume that X is a Banach space with the norm | . |. Let J ⊂ R.

Denote C(J,X) be the Banach space of continuous functions from J into X. Let r > 0

and C = C ([r, 0] , X) be the space of continuous functions from [r, 0] into X. For any

element z ∈ C, define the norm ‖ z ‖∗= supθ∈[−r,0] | z(θ) |.

Consider the initial value problem (IVP for short) for fractional functional differential

equation given by 
C
0 D

q
tx(t) = f (t, xt) , t ∈ (0, a)

x0 = ϕ ∈ C
(2.1)

where C
0 D

q
t is Caputo fractional derivative of order 0 < q < 1, f : [0, a)×C → X is a given

function satisfying some assumptions and define xt by xt(θ) = x(t+ θ), for θ ∈ [−r, 0]

Now, we shall discuss the existence of the solutions for fractional IVP (2.1) under assump-

tions that f satisfies Carathéodory condition and the condition on measure of noncom-

pactness. .
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Definition [6]

A function x ∈ C([−r, T ], X) is a solution for fractional IVP (2.1) on [−r, T ] for T ∈ (0, a)

if

1. the function x(t) is absolutely continuous on [0, T ];

2. x0 = ϕ;

3. x satisfies the equation in (2.1).

2.1.1 Existence

[6]

Now we start proving the existence of the solutions for fractional IVP (2.1) under the

following hypotheses:

(H1) for almost all t ∈ [0, a), the function f(t, ·) : C → X is continuous and for each

z ∈ C, the function f(·, z) : [0, a)→ X is strongly measurable;

(H2) for each τ > 0, there exist a constant q1 ∈ [0, q) and m1 ∈ L
1
q1 ([0, a),R+)

such that |f(t, z)| ≤ m1(t) for all z ∈ C with ‖z‖∗ ≤ τ and almost all t ∈ [0, a);

(H3) there exist a constant q2 ∈ (0, q) and m2 ∈ L
1
q2 ([0, a),R+) such that α(f(t, B)) ≤

m2(t)α(B) for almost all t ∈ [0, a) and B a bounded set in C.
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Lemma [6]

Assume that the hypotheses (H1) and (H2) hold. x ∈ C ([r, T ] , X) is a solution for

fractional IVP (2.1) on [r, T ] for T ∈ (0, a) if and only if x satisfies the following relation :

 x(θ) = ϕ(θ), for θ ∈ [−r, 0],

x(t) = ϕ(0) + 1
Γ(q)

∫ t
0
(t− s)q−1f (s, xs) ds, for t ∈ [0, T ].

Proof (see [6])

Theorem∗

Assume that hypotheses (H1)-(H3) hold. Then, for every φ ∈ C, there exists a solution

x ∈ C ([r, T ] , X) for fractional IVP (1.1) with some T ∈ (0, a).

Corollary

Assume that hypotheses (H1)-(H3) hold. Then, for every φ ∈ C, there exist T ∈ (0, a)

and a sequence of continuous function xn : [r, T ] −→ X, such that

1. xn(t) are absolutely continuous on [0, T ];

2. xn0 = ϕ, for every n ≥ 1.

3. extracting a subsequence which is labeled in the same way such that xn(t) → x(t)

uniformly on [−r, T ] and x : [−r, T ]→ X is a solution for fractional IVP (2.1).

Example

Consider the infinite system of fractional functional differential equations


C
0 D

1
2
t xn(t) = 1

nt1/3
x2
n(t− r), for t ∈ (0, a),

xn(θ) = ϕ(θ) = θ
n
, for θ ∈ [−r, 0], n = 1, 2, 3, . . .

(2.2)

Let E = c0 = {x = (x1, x2, x3, . . .) : xn → 0} with norm |x| = supn≥1 |xn|.

Then the infinite system (2.2) can be regarded as a fractional IVP of form (2.1) in E. In

this situation, q = 1
2
, x = (x1, . . . , xn, . . .) , xt = x(t − r) = (x1(t− r), . . . , xn(t− r), . . .),

ϕ(θ) =
(
θ, θ

2
, . . . , θ

n
, . . .

)
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for θ ∈ [−r, 0] and f = (f1, . . . , fn, . . .), in which

fn (t, xt) =
1

nt1/3
x2
n(t− r) (2.3)

It is obvious that conditions (H1) and (H2) are satisfied.

Now, we check the condition (H3) Let t ∈ (0, a), R > 0 be given and
{
w(m)

}
be any

sequence in f(t, B), where w(m) =
(
w

(m)
1 , . . . , w

(m)
n , . . . ) and B = {z ∈ C : ‖z‖∗ ≤ R} is a

bounded set in C By (2.3), we have

0 ≤ w(m)
n ≤ R2

nt1/3
, n,m = 1, 2, 3, . . . (2.4)

So,
{
w

(m)
n

}
is bounded and, by the diagonal method, we can choose a subsequence {mi} ⊂

{m} such that

w(mi)
n → wn as i→∞, n = 1, 2, 3, . . .

which implies by virtue of (2.4) that

0 ≤ wn ≤
R2

nt1/3
, n = 1, 2, 3, . . .

Hence w = (w1, . . . , wn, . . .) ∈ c0. It is easy to see from (2.4) that

∣∣w(mi) − w
∣∣ = sup

n

∣∣w(mi)
n − wn

∣∣→ 0 as i→∞

Thus, we have proved that f(t, B) is relatively compact in c0 for t ∈ (0, a), which means

that f(t, B) = 0 for almost all t ∈ [0, a) and B a bounded set in C. Hence, the condition

(H3) is satisfied. Finally, from Theorem∗, we can conclude that the infinite system (2.2)

has a continuous solution.
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2.2 Cauchy Problems via Topological Degree Method

We consider the following problem via a coincidence degree for condensing mapping in a

Banach space X 
C
0 D

q
tu(t) = f(t, u(t)), t ∈ J := [0, T ]

u(0) + g(u) = u0

(2.5)

where C
0 D

q
t is Caputo fractional derivative of order q ∈ (0, 1), u0 is an element of X, f :

J ×X → X is continuous. The nonlocal term g : C(J,X)→ X is a given function, here

C(J,X) is the Banach space of all continuous functions from J into X with the norm

‖u‖ := supt∈J |u(t)| for u ∈ C(J,X).

2.2.1 Qualitative Analysis

This subsection deals with existence of solutions for the nonlocal problem (2.5).

Definition

A function u ∈ C1(J,X) is said to be a solution of the nonlocal problem (2.5) if u satisfies

the equation C
0 D

q
tu(t) = f(t, u(t)) a.e. on J , and the condition u(0) + g(u) = u0.

Lemma [6]

A function u ∈ C(J,X) is a solution of the fractional integral equation

u(t) = u0 − g(u) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds (2.6)

if and only if u is a solution of the nonlocal problem (2.5). We make some following

assumptions:
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(H1) for arbitrary u, v ∈ C(J,X), there exists a constant Kg ∈ [0, 1) such that

|g(u)− g(v)| ≤ Kg‖u− v‖ ;

(H2) for arbitrary u ∈ C(J,X), there exist Cg,Mg > 0, q1 ∈ [0, 1) such that

|g(u)| ≤ Cg‖u‖q1 +Mg;

(H3) for arbitrary (t, u) ∈ J ×X, there exist Cf ,Mf > 0, q2 ∈ [0, 1) such that

|f(t, u)| ≤ Cf |u|q2 +Mf ;

(H4) for any r > 0, there exists a constant βr > 0 such that

α(f(s,M)) ≤ βrα(M)

for all t ∈ J,M⊂ Br := {‖u‖ ≤ r : u ∈ C(J,X)} and

2T qβr
Γ(q + 1)

< 1

Under the assumptions (H1)-(H4), we show that fractional integral equation (2.6) has at

least one solution u ∈ C(J,X). Define operators

F : C(J,X)→ C(J,X), (Fu)(t) = u0 − g(u), t ∈ J

G : C(J,X)→ C(J,X), (Gu)(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds, t ∈ J

T : C(J,X)→ C(J,X), Tu = Fu+Gu

It is obvious that T is well defined. Then, fractional integral equation (2.6) can be written
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as the following operator equation

u = Tu = Fu+Gu

Thus, the existence of a solution for the nonlocal problem (2.5) is equivalent to the exis-

tence of a fixed point for operator T.

Lemma [6]

The operator F : C(J,X) → C(J,X) is Lipschitz with constant Kg. Consequently F

is α -Lipschitz with the same constant Kg. Moreover, F satisfies the following growth

condition:

‖Fu‖ ≤ |u0|+ Cg‖u‖q1 +Mg

for every u ∈ C(J,X).

Proof (see [6])

Lemma [6]

The operator G : C(J,X) → C(J,X) is continuous. Moreover, G satisfies the following

growth condition:

‖Gu‖ ≤ T q (Cf‖u‖q2 +Mf )

Γ(q + 1)
(2.7)

for every u ∈ C(J,X).

Proof [6]

For that, let {un} be a sequence of a bounded set BK ⊆ C(J,X) such that un → u in

BK(K > 0). We have to show that ‖Gun −Gu‖ → 0.

It is easy to see that f (s, un(s)) → f(s, u(s)) as n → ∞ due to the continuity of f. On

the one hand, using (H3), we get for each t ∈ J (t − s)q−1 | f (s, un(s)) − f(s, u(s)) |≤

(t− s)q−12 (CfK
q2 +Mf ) .

On the other hand, using the fact that the function s → (t − s)q−12 (CfK
q2 +Mf ) is

integrable for s ∈ [0, t], t ∈ J , Lebesgue dominated convergence theorem yields
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∫ t
0
(t− s)q−1 |f (s, un(s))− f(s, u(s))| ds→ 0 as n→∞. Then, for all t ∈ J ,

|(Gun) (t)− (Gu)(t)| ≤ 1

Γ(q)

∫ t

0

(t− s)q−1 |f (s, un(s))− f(s, u(s))| ds→ 0.

Therefore, Gun → Gu as n→∞ which implies that G is continuous. Relation (2.7) is a

simple consequence of (H3).

Lemma [6]

The operator G : C(J,X) → C(J,X) is compact. Consequently G is α-Lipschitz with

zero constant.

Proof (see [6])

Theorem [6]

Assume that (H1)-(H4) hold, then the nonlocal problem (2.6) has at least one solution

u ∈ C(J,X) and the set of the solutions of system (2.6) is bounded in C(J,X).

Remark [6]

1. If the growth condition (H2) is formulated for q1 = 1, then the conclusions of

Theorem
′

remain valid provided that Cg < 1.

2. If the growth condition (H3) is formulated for q2 = 1, then the conclusions of

Theorem
′

remain valid provided that
T qCf

Γ(q+1)
< 1

3. If the growth conditions (H2) and (H3) are formulated for q1 = 1 and q2 = 1, then

the conclusions of Theorem
′

remain valid provided that Cg +
T 4Cf

Γ(q+1)
< 1



Chapter 3

Fractional Differential Equations

with Initial Conditions at Inner

Points

3.1 Existence and Uniqueness Results

In this section, we study the initial value problem for nonlinear fractional differential

equations with initial conditions at inner points. More precisely, we will prove a Peano

type theorem of the fractional version. We begin with the definition of the solutions to

this problem.

Consider initial value problem (IVP for short) ( see [1] [2] )


cDα

a y(x) = f(x, y(x)), x ≥ x0 ∈ (a, b)

y (x0) = y0

(3.1)

Where 0 < α < 1, cDα
a , f [a, b]×X −→ X is a given.

Problem (3.1) is equivalent to the integral equation

y(x) = y0 +

∫ x

a

(x− t)α−1

Γ(α)
f(t, y(t))dt−

∫ x0

a

(x0 − t)α−1

Γ(α)
f(t, y(t))dt. (3.2)

We first give an existence result based on the Banach contraction principle.
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Theorem1 [1] [2]

Let 0 < α < 1, and G = [a, b] × X . Let f : GßX be continuous and fulfill a Lipschitz

condition with respect to the second variable with a Lipschitz constant L, i.e.

| f(x, y2)− f(x, y1) |≤ L ‖ y2 − y1 ‖, (x, y1), (x, y2) ∈ G

Then for (x0, y0) ∈ G with x0 < α +

(
Γ(α + 1)

2L

) 1
α

, there exists a unique solution

y ∈ C ([a, x0]×X) to the IVP.

proof [1] [2]

We define a mapping T : C ([a, x0] , X)→ C ([a, x0] , X) by

(Ty)(x) = y0 +

∫ x

a

(x− t)α−1

Γ(α)
f(t, y(t))dt−

∫ x0

a

(x0 − t)α−1

Γ(α)
f(t, y(t))dt

for y ∈ C ([a, x0] , X) and x ∈ [a, x0] . Then for any y1, y2 ∈ C ([a, x0] , X) and x ∈ [a, x0],

we have

‖(Ty2) (x)− (Ty1) (x)‖ ≤
∫ x

a

(x− t)α−1

Γ(α)
‖f (t, y2(t))− f (t, y1(t))‖ dt

+

∫ x0

a

(x0 − t)α−1

Γ(α)
‖f (t, y2(t))− f (t, y1(t))‖ dt

≤L
∫ x

a

(x− t)α−1

Γ(α)
‖y2(t)− y1(t)‖ dt

+ L

∫ x0

a

(x0 − t)α−1

Γ(α)
‖y2(t)− y1(t)‖ dt

≤2L (x0 − a)α

Γ(α + 1)
‖y2 − y1‖∞

And hence

‖Ty2 − Ty1‖∞ ≤ K ‖y2 − y1‖∞

with K = 2L(x0−a)α

Γ(α+1)
.

Since x0 < a +
(

Γ(α+1)
2L

)1/α

, we get that 2L(x0−a)α

Γ(α+1)
< 1. Thus an application of Banach’s

fixed point theorem yields the existence and uniqueness of solution to our integral equation

(3.2).

Remark[1] [2]
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The condition x0 < a+
(

Γ(α+1)
2L

)1/α

means that the point x0 cannot be far away from a.

However, the following example shows that we cannot expect that there exists a solution

to 1.1 for each x0 ∈ (a, b].

Example [1] [2]

Consider the differential equation with the Caputo fractional derivative

cD
1
2
0 y(x) =

2
√
x√
πc
y2(x)

Consider the differential equation with the Caputo fractional derivative

y(x) =
1√
c− x

whose existence interval is [0; c).

However, from the proof of Theorem1 we can see that if the Lipschitz constant L is small

enough, then x0 can be extended to the whole interval. Thus we have the following result.

Thoerem [1] [2]

Let 0 < α < 1 and G = [a; b]×R . Let f : G −→ X be continuous and fulfill a Lipschitz

condition with respect to the second variable with a Lipschitz constant L.

If L <
Γ(α + 1)

2(a− b)α
, then for every (x0; y0) ∈ G, there exists a unique solution y ∈ C [a;x0]

to the IVP(3.1).
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Now we prove an existence result to the initial value problem at inner points (3.1)based

on the generalized Banach contraction principle.

Thoerem [1] [2]

Let 0 < α < 1 and G = [a, b] ×X. Let f : G → X be continuous and fulfill a Lipschitz

condition with respect to the second variable with a Lipschitz constant L.

Suppose (x0, y0) ∈ G with x0 ≤ a +
(

Γ(α+1)
2L

)1/α

. Then for h > 0, there exists a unique

solution on [a, x0 + h] to IVP (3.1).

Proof [1]

A function y ∈ C ([a, x0 + h] ;X) is a solution to (1.1)if and only if y satisfies

y(x) = y0 +

∫ x

a

(x− t)α−1

Γ(α)
f(t, y(t))dt−

∫ x0

a

(x0 − t)α−1

Γ(α)
f(t, y(t))dt (3.3)

for t ∈ [a, x0 + h]. By Theorem1, there exists a unique function y∗ ∈ C ([a, x0] ;X)

satisfying

y∗(x) = y0 +

∫ x

a

(x− t)α−1

Γ(α)
f (t, y∗(t)) dt−

∫ x0

a

(x0 − t)α−1

Γ(α)
f (t, y∗(t)) dt (3.4)

Extend y∗ to [a, x0 + h], also denoted by y∗, by

 y∗(x) = y∗(x), x ∈ [a, x0]

y∗(x) = y0, x ∈ [x0, x0 + h] .
(3.5)

For z ∈ C ([x0, x0 + h] ;X) with z (x0) = 0, we extend z to [a, x0 + h], still denoted by z̃,

by  z̃(x) = 0, x ∈ [a, x0]

z̃(x) = z(x), x ∈ [x0, x0 + h] .
(3.6)

It is easily seen that a function y ∈ C ([a, x0 + h] ;X) satisfies (3.3) if and only if there

is a function z ∈ C ([x0, x0 + h] ;X) with z (x0) = 0 such that y = y∗ + z̃ on [a, x0 + h].
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Moreover, y and y∗ agree on [a, x0] and for x ∈ [x0, x0 + h], we have

z̃(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f (t, y∗(t) + z̃(t)) dt

− 1

Γ(α)

∫ x0

a

(x0 − t)α−1 f (t, y∗(t) + z̃(t)) dt

=
1

Γ(α)

∫ x0

a

[
(x− t)α−1 − (x0 − t)α−1] f (t, y∗(t) + z̃(t)) dt+

1

Γ(α)

∫ x

x0

(x−t)α−1f (t, y∗(t) + z̃(t)) dt.

Due to (3.5) and (3.6) this equation can be rewritten as

z(x) =
1

Γ(α)

∫ x0

a

[
(x− t)α−1 − (x0 − t)α−1] f (t, y∗(t)) dt+

1

Γ(α)

∫ x

x0

(x− t)α−1f (t, z(t) + y0) dt

= g(x) +
1

Γ(α)

∫ x

x0

(x− t)α−1f (t, z(t) + y0) dt

for x ∈ [x0, x0 + h], where g(x) = 1
Γ(α)

∫ x0
a

[
(x− t)α−1 − (x0 − t)α−1] f (t, y∗(t)) dt with

g (x0) = 0. Since y∗ is uniquely determined on [a, x0] , g is a known function. Let

W = {z ∈ C ([x0, x0 + h] ;Rm) : z (x0) = 0} endowed with the supremum norm ‖z‖∞ =

supx∈[x0,x0+h] ‖z(x)‖. Then W becomes a Banach space. Define an operator T : W → W

by

(Tz)(x) = g(x) +
1

Γ(α)

∫ x

x0

(x− t)α−1f (t, z(t) + y0) dt

for z ∈ W and all x ∈ [x0, x0 + h]. Obviously if z is a fixed point of T , then y = y∗ + z̃ is

a solution to (3.1) and vise versa.

Below we prove that T has a unique fixed point in W by the generalized Banach contrac-

tion principle.

We first note that T is well-defined due to the continuity of the function g and the fact

that g (x0) = 0. Next we prove that for any z1, z2 ∈ W ,

‖T nz2 − T nz1‖∞ ≤
(Lhα)n

Γ(nα + 1)
‖z2 − z1‖∞

for every n ∈ N. In fact, take arbitrary z1, z2 ∈ W . Then for every x ∈ [x0, x0 + h], we
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have

‖Tz2(x)− Tz1(x)‖ ≤ 1

Γ(α)

∫ x

x0

(x− t)α−1 ‖f (t, z2(t) + y0)− f (t, z1(t) + y0)‖ dt

≤ L

Γ(α)

∫ x

x0

(x− t)α−1 ‖z2(t)− z1(t)‖ dt

= LIαx0 ‖z2(·)− z1(·)‖ (x)

Then we have

∥∥T 2z2(x)− T 2z1(x)
∥∥ ≤ 1

Γ(α)

∫ x

x0

(x− t)α−1 ‖f (t, T z2(t) + y0)− f (t, T z1(t) + y0)‖ dt

≤ L

Γ(α)

∫ x

x0

(x− t)α−1 ‖Tz2(t)− Tz1(t)‖ dt

=
L2

Γ(α)

∫ x

x0

(x− t)α−1
(
Iαx0 ‖z2 − z1‖ (t)

)
dt

= L2I2α
x0
‖z2(·)− z1(·)‖ (x).

By induction, we deduce that for n ∈ N and every x ∈ [x0, x0 + h],

‖T nz2(x)− T nz1(x)‖ ≤ LnInαx0 ‖z2(·)− z1(·)‖ (x) =
Ln

Γ(nα)

∫ x

−∞
(x−t)nα−1 ‖z2(t)− z1(t)‖ dt

≤ Ln

Γ(nα)

∫ x
x0

(x− t)nα−1dt ‖z2 − z1‖∞

= Ln

Γ(nα+1)
(x− x0)nα ‖z2 − z1‖∞

≤ Ln

Γ(nα+1)
hnα ‖z2 − z1‖∞

Take supremum on both side we obtain that

‖T nz2 − T nz1‖∞ ≤
(Lhα)n

Γ(nα + 1)
‖z2 − z1‖∞

for every n ∈ N. Since limn→∞
(Lhα)n

Γ(nα+1)
= 0, we can take a natural number n0 large enough

such that. (Lhα)n0

Γ(n0α+1)
< 1

2
. Hence

‖T n0z2 − T n0z1‖∞ ≤
1

2
‖z2 − z1‖∞

By the generalized Banach contraction principle, T has a unique fixed point z in W and
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this completes the proof.



Conclusion

In this dissertation we present some results of existence and uniqueness of the initial

value problem for nonlinear fractional differential equations with initial conditions at inner

points, we use the Caputo derivative and some fix point theorems.
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