Master's thesis

In order to obtain a diploma of an Academic Master

In biological sciences

Specialty: Biodiversity and Plant Physiology

Theme

Phytochemical study and biological activity of different extract from flowers of parasitic plant

Cistanche tinctoria (Desf.) Beck.

Presented by: CHENGUEL Aouatef

Defense date: 19/06/2019

President: Mr. BENALI Abdelhai M.A.A El-Oued University

Supervisor: Dr. CHOUIKH Atef M.C.A El-Oued University

Examiner: Dr. LAICHE Ammar Touhami M.C.B El-Oued University

2018/2019
إلى أمي .. ليلية العينين .. تلك التي أهدتني عمرًا وأكثر ..
إلى أبي .. من لم تمنحني الحياة فتنى ذكري معه أسد بها جوع الحنين ..
إليهما .. من تحتاج أحر كي اعتناق أجديي أخرى كي بصف امتناي وحبي لهم ..

مرحباً الله

شغف عواطف
Acknowledgment

First, all praise to Allah the most gracious and most merciful for bestowing me with knowledge, ideas, endless mercy and blessing, Alhamdulillah. This research has been made bearable, enjoyable and memorable journey with the aid of several generous and kind-hearted individuals.

For most, I would like to express my sincere gratitude to my supervisor Dr. CHOUIKH Atef for the useful comments, remarks and continuous support through the learning process of this master thesis, also for his faith in my abilities, his great patience and guidance, which helped me all the time of this research.

I would like to extend thanks to my thesis committee: Mr. BENALI Abdelhai and Dr. LAICHE Ammar Touhami for generously offering their time to discuss this thesis, I feel proud and honored that they have accepted to be on my committee.

Also, I owe more than thank to my dear brothers: ZOUHIR, ABD ELHAMID, ABD ERRAHMAN, TAHER, MOUNIR and IBRAHIM, for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

I would like to thank my best friends: BASMA, CHAIMA & ZEINEB who have always been a source of moral support to me, thanks for the friendship and memories.

Finally, I have to thank all the people without whom this thesis would never have been possible. Although it is just my name on the cover, many people contributed to the research in their own particular way, I really appreciate that, thanks.

CHENGUEL AOUATEF
Abstract:

In order to evaluate the natural products of the desert plants, we conducted this work which is based on study the differences in amount of phenolic compounds and estimate the antioxidant activity of the flowers of the parasitic plant *Cistanche tinctoria* (Desf.) Beck (Orobanchaceae) growing in Oued-Souf region.

After the extraction processes, the yield of the three extracts (Crude, Flavonoids phase Ethyl acetate and Tannins) was estimated with a variance in its values, the highest value recorded in the crude extract (11.26 %), however the tannin extract got the lowest value (0.505%). The results of the estimation of phenolic compounds showed that polyphenols and flavonoids were estimated by 167.74 ± 24.36 mg EAG/g Extract and 26.76 ± 2.69 mg EQu/g Extract, respectively.

The antioxidant activity was performed by three tests, the results of the first one which is the DPPH’ test, showed that tannin extract had the best inertial capacity than the other extracts (IC$_{50}$= 8.12 µg/ml), however the results of Hemolysis test showed that the Flavonoid extract got the lowest disintegration (22.47%) between the extracts. The third test was the Reducing power assay and its results showed that the tannin extract had the highest reducing power between the extracts of *Cistanche tinctoria* (Desf). Beck. The three tests were applied using the Ascorbic acid as a standard compound.

The qualitative analysis of the extract using High Performance Liquid Chromatography (HPLC) showed the differences of concentrations and types of some phenolic compounds in the crude extract of *Cistanche tinctoria* (Desf). Beck, such as: Chlorogenic acid (1.152 µg /mg Extract) and Naringin (27.456 µg /mg Extract).

Key words: *Cistanche tinctoria* (Desf). Beck., Crude Extract, Tannins, Polyphenols, Flavonoids, Antioxidant activity, DPPH test, Hemolysis test, Reducing power assay, HPLC.
الملخص:

قد تم تثمين المنتجات الطبيعية في النباتات البرية الصحراوية، أجريت هذه الدراسة والتي تهدف إلى التقدير الكمي للمركبات الفينولية وكذا دراسة النشاطية المضادة للأكسدة لأزهار نبات Cistanche tinctoria (Desf). Beck الترثوث التي، بينت النتائج أن هناك اختلاف في قيم المركب الفينولية وكذا دراسة النشاطية المضادة للأكسدة لأزهار نبات Cistanche tinctoria (Desf). Beck الترثوث.

بحث

سجلت عند المستخلص الخام (22.11%)، بينما سجل مستخلص التانينات أدنى قيمة (0.0%)، أما في اختبار النشاطية المضادة للأكسدة، فقد أظهرت نتائج التقدير الكمي لعديدات الفينول والفلافونويدات للمستخلص الخام اختلافا بينهما وقدرت النتائج بـ 26.76 ± 2.69 mg EQu/g Extract و 167.74 ± 24.36 mg EAG/g Extract.

من خلال دراسة النشاطية المضادة للأكسدة للمستخلصات المختلفة، أبدت نتائج اختبار DPPH تفوق مستخلص التانينات على باقي المستخلصات بفضل تثبيطية قدرت بـ (IC50 = 8.12 μg/ml) أما في اختبار انحلال كريات الدم الحمراء (Hemolysis) فقد تميز مستخلص الفلافونويدات بأقل نسبة انحلال قدرت بـ (22.47%), في حين أن نتائج اختبار القدرة الارجاعية (Reducing power assay) قد أظهرت تميز مستخلص التانينات بأكبر قدرة ارجاعية من بين المستخلصات الثلاث.

أما التحليل النوعي للمستخلص الخام لأزهار نبات الترثوث باستعمال الكروماتوغرافيا السائلة عالية الأداء HPLC، التي أبدت نتائجه اختلافات في نوع وتركيز المركبات الفينولية، على غرار حمض الكلوروجينيك (2.201 ميكروغرام/ملغ من المستخلص) والناجينين (2.456 ميكروغرام/ملغ من المستخلص).

الكلمات المفتاحية: نبات الترثوث، Cistanche tinctoria (Desf). Beck، التانينات، المركبات الفينولية، الفلافونويدات، النشاطية المضادة للأكسدة، اختبار DPPH، اختبار HPLC، اختبار Hemolysis، القدرة الارجاعية.
Résumé:

Afin de valoriser notre ressources végétales naturelles, ce travail a été menée pour faire une étude quantitative des composés phénoliques et étudié l'activité antioxydante des extraits des fleurs *Cistanche tinctoria* (Desf). Beck. qu'il est développe dans la zone d'Oued-Souf.

Les résultats ont montré une différence dans les valeurs de rendement entre les extraits: la valeur la plus élevée a été enregistrée à l'extrait brut (11.29%), et l'extrait de tanin était le plus bas (0.505%). Aussi les résultats de l'estimation quantitative des polyphénols et flavonoïdes pour l'extrait brut était différente et ils ont été estimées par: $167.74 \pm 24.36 \text{mg EAG/g Extrait} \text{ et } 26.76 \pm 2.69 \text{mg EQu/g Extrait}$, respectivement.

L'activité antioxydante a été évaluée par trois tests. la premier test est le test DPPH$^\bullet$ et les résultats ont montré que l'extrait de tanins était supérieur au reste des extrais avec une capacité d'inhibition ($IC_{50}= 8.12 \mu g/ml$), mais à test d'hémolyse, l'extrait de flavonoïdes qui a donné la meilleure protection de érythrocytes (22.47% d'érythrocytes dissous). La troisième test était le test de Pouvoir Réducteur, les résultats de ce test ont montré que l'extrait de tanins a un bonne pouvoir réducteur plus élevé que les autres extrait.

L'analyse qualitative des extraits par Chromatographie Liquide Haute Performance (HPLC) a montré les différences de concentration et de qualité de composés phénoliques, par exemple chez l'acide Chlorogénique (1.152 µg /mg Extrait) et Naringine (27.456 µg /mg Extrait).

Mots-clés: *Cistanche tinctoria* (Desf). Beck., Extait brut, Tanins, Composés phénoliques, Flavonoïdes, L'activité antioxydante, Test DPPH, Test d'hémolyse, Pouvoir Réducteur, HPLC.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
</table>

Abstract

Table of contents

Figures list

Tables list

Abbreviation list

Introduction

First part: Bibliographic synthesis

Chapter I: Phenolic compounds

1- Preface 05

2- Phenolic compounds 05

 2-1- Definition 05

 2-2- Sources 06

 2-3- Classification 07

 2-4- Role and importance of phenolic compounds 07

 2-5- Phenolic groups 08

 2-5-1- Simple phenols 08

 2-5-1-1- Phenolic acid 08

 2-5-1-2- Flavonoids 08

 2-5-2- Complex phenols (Tannins) 12

Chapter II: Oxidative stress & Antioxidants

1- Oxidative stress 15

2- Free radicals 15

 2-1- Definition of free radicals 15

 2-2- Types of free radicals 15

 2-3- Sources of free radical 16

 2-3-1- Internal sources 16

 2-3-2- External sources 18

3- Antioxidants 19

 3-1- Definition of antioxidants 19

 3-2- Classification of antioxidants 19
<table>
<thead>
<tr>
<th>3-2-1 Natural antioxidants</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-2-1-1 Enzymatic antioxidants</td>
<td>20</td>
</tr>
<tr>
<td>3-2-1-2 Non-enzymatic antioxidants</td>
<td>21</td>
</tr>
<tr>
<td>3-2-2 Synthetic antioxidants</td>
<td>23</td>
</tr>
</tbody>
</table>

Chapter III: A taxonomic study of *Cistanche tinctoria* (Desf). Beck

1. Presentation of the Orobanchaceae family | 26 |
2. Presentation of the genus *Cistanche* | 26 |
3. Presentation of the plant *Cistanche tinctoria* (Desf). Beck | 27 |
 3-1 Definition | 27 |
 3-2 Classification | 28 |
 3-3 Distribution | 28 |
 3-4 Traditional uses | 28 |

Second part: Experimental part

Chapter I: Materials & Methods

1. Materials | 31 |
 1-1 Plant materials (*Cistanche tinctoria*) | 31 |
 1-2 Materials and methods used in preparing the plant materials | 31 |
2. Methods | 32 |
 2-1 Preparation of the methanolic extracts of *C.tinctoria* | 32 |
 2-2 Extraction of flavonoids | 33 |
 2-3 Extraction of tannins | 34 |
 2-4 Determination of extraction yield | 35 |
 2-5 Determination of total phenolic contents | 35 |
 2-6 Determination of total flavonoid contents | 35 |
 2-7 Evaluation of antioxidant activity | 36 |
 2-7-1 DPPH scavenging assay | 36 |
 2-7-2 Hemolysis assay | 37 |
 2-7-3 Reducing power assay | 38 |
 2-8 High performance liquid chromatography (HPLC) | 39 |
Chapter II: Results & Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Results</td>
<td>41</td>
</tr>
<tr>
<td>1-1- Determination of extraction yield</td>
<td>41</td>
</tr>
<tr>
<td>1-2- Total phenolic and flavonoid contents</td>
<td>41</td>
</tr>
<tr>
<td>1-3- Evaluation of antioxidant capacity</td>
<td>43</td>
</tr>
<tr>
<td>1-3-1- DPPH scavenging assay</td>
<td>43</td>
</tr>
<tr>
<td>1-3-2- Hemolysis assay</td>
<td>45</td>
</tr>
<tr>
<td>1-3-3- Reducing power assay</td>
<td>48</td>
</tr>
<tr>
<td>1-4- High performance liquid chromatography (HPLC)</td>
<td>50</td>
</tr>
<tr>
<td>2- Discussion</td>
<td>53</td>
</tr>
<tr>
<td>Conclusion</td>
<td>59</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Annexes</td>
<td></td>
</tr>
</tbody>
</table>
Figures list

<table>
<thead>
<tr>
<th>N°</th>
<th>Figure title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>The three groups of secondary metabolites</td>
<td>05</td>
</tr>
<tr>
<td>02</td>
<td>The classification of phenolic compounds</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>The basic unit of flavonoids</td>
<td>09</td>
</tr>
<tr>
<td>04</td>
<td>The different structures of classes of flavonoids</td>
<td>09</td>
</tr>
<tr>
<td>05</td>
<td>The basic structure of tannins</td>
<td>12</td>
</tr>
<tr>
<td>06</td>
<td>Production and disposal of mitochondria ROS</td>
<td>17</td>
</tr>
<tr>
<td>07</td>
<td>Schematic diagram of the structure of the active NADPH oxidase complex</td>
<td>17</td>
</tr>
<tr>
<td>08</td>
<td>Reactive oxygen species (ROS) -induced oxidative damage</td>
<td>19</td>
</tr>
<tr>
<td>09</td>
<td>Chemical structure of Vitamin C</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Chemical structure of Vitamin E</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>Chemical structure of Vitamin A</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>Diagrammatic representation of the site of enzymatic and non-enzymatic antioxidants</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>Structure of some synthetic antioxidants</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>External morphology of the genus Cistanche</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>Cistanche tinctoria (Desf). Beck (original photos)</td>
<td>27</td>
</tr>
<tr>
<td>16</td>
<td>The place of collecting the flowers of C. tinctoria (Desf). Beck</td>
<td>31</td>
</tr>
<tr>
<td>17</td>
<td>Protocol of preparation the crude extract</td>
<td>32</td>
</tr>
<tr>
<td>18</td>
<td>Protocol of extraction the flavonoids</td>
<td>33</td>
</tr>
<tr>
<td>19</td>
<td>Protocol of extraction of tannins</td>
<td>34</td>
</tr>
<tr>
<td>20</td>
<td>Principle of DPPH radical scavenging capacity assay</td>
<td>36</td>
</tr>
<tr>
<td>21</td>
<td>A linear calibration curve of Gallic acid (standard) in the total phenolic assay</td>
<td>42</td>
</tr>
<tr>
<td>22</td>
<td>A linear calibration curve of Quercetin (standard) in the total flavonoid assay</td>
<td>42</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>23</td>
<td>A linear calibration curve of Ascorbic acid (standard) in the DPPH radical scavenging assay</td>
<td>44</td>
</tr>
<tr>
<td>24</td>
<td>Values of antioxidant activity of extracts of Cistanche tinctoria (Desf). Beck and standard compound (AA) with C= 10 µg/ml</td>
<td>44</td>
</tr>
<tr>
<td>25</td>
<td>The IC₅₀ values (DPPH- test) (µg/ml) of the extracts of C. tinctoria (Desf). Beck and the standard compound (AA).</td>
<td>45</td>
</tr>
<tr>
<td>26</td>
<td>A linear calibration curve of Ascorbic acid (standard) in Hemolysis assay</td>
<td>46</td>
</tr>
<tr>
<td>27</td>
<td>A linear calibration curve of crude extract in Hemolysis assay</td>
<td>46</td>
</tr>
<tr>
<td>28</td>
<td>A linear calibration curve of flavonoid extract in Hemolysis assay</td>
<td>47</td>
</tr>
<tr>
<td>29</td>
<td>A linear calibration curve of tannins extract in Hemolysis assay</td>
<td>47</td>
</tr>
<tr>
<td>30</td>
<td>Rate of Hemolysis of the extracts of C. tinctoria (Desf). Beck and Ascorbic acid with c=1mg/ml</td>
<td>48</td>
</tr>
<tr>
<td>31</td>
<td>A linear calibration curve of Ascorbic acid in reducing power assay</td>
<td>49</td>
</tr>
<tr>
<td>32</td>
<td>Column graph of Reducing Power assay of extracts and AA with C= 0.1 mg/ml</td>
<td>49</td>
</tr>
<tr>
<td>33</td>
<td>Chromatogram of methanolic extract of Cistanche tinctoria (Desf). Beck</td>
<td>50</td>
</tr>
</tbody>
</table>
Tables list

<table>
<thead>
<tr>
<th>N°</th>
<th>Table title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>The most important classes of phenolic compounds</td>
<td>07</td>
</tr>
<tr>
<td>02</td>
<td>Some examples of reactive oxygen and nitrogen species</td>
<td>16</td>
</tr>
<tr>
<td>03</td>
<td>Materials and methods used for preparing the plant materials</td>
<td>31</td>
</tr>
<tr>
<td>04</td>
<td>Percentage yield of each extract</td>
<td>41</td>
</tr>
<tr>
<td>05</td>
<td>Total phenolic and flavonoid contents in crude extract</td>
<td>43</td>
</tr>
<tr>
<td>06</td>
<td>Some phenolic compounds of methanolic extract of C.tinctoria (Desf). Beck</td>
<td>50</td>
</tr>
<tr>
<td>07</td>
<td>Concentration of known phenolic compounds of methanolic extract of C.tinctoria (Desf). Beck.</td>
<td>51</td>
</tr>
</tbody>
</table>
Abbreviation list

AA: Ascorbic acid.

AlCl₃: Aluminum trichloride.

BHA: Butylhydroxyanisol.

BHT: Butylhydroxytoluene.

DNA: Deoxyribonucleic acid.

DPPH: 1,1-diphenyl-2-picrylhydrazyl.

FeCl₃: Ferric chloride.

FR: Free radical.

GST: Glutathione S-transferase.

GPₓ: Glutathione peroxidases.

GRₓ: Glutathione reductases.

HIV-1: Human immunodeficiency virus 1.

HO: Heme oxygen.

H₂O₂: Hydrogen peroxide.

HPLC: High performance liquid chromatography.

I%: Percentage of inhibition.

IC₅₀: Concentration of inhibition 50% of DPPH radical.

LDL: Low density lipoprotein.

LMWA: Law molecular weight antioxidant.

Mg GAE/g EX: Mg of Gallic acid equivalents in 1 g of the extract.

Mg QAE/g EX: Mg of Quercetin equivalent in 1 g of the extract.

NADPH: Nicotinemide adenine dinucleotide phosphate.

O₂: Oxygen.

PG: Propyl gallate.

RNS: Reactive nitrogen species.

ROS: Reactive oxygen species.

SH: Sulphydryl.

SOD: Superoxide dismutase.

TPC: Total phenolic contents.

TPHQ: Tertiary butylhydroquinone.

UV: Ultraviolet.
Introduction
Introduction

Plants are the GOD’s special gift to this planet, indeed every plant on the planet has the potential and capability of serving one purpose or another. They are so important for our lives because they used for many things such as: beautification, medicines and of course as a food. That’s why they have been the subject of man’s curiosity since time immemorial, but still the man do not fully exploit them, especially since the compounds of some unstudied plants may serve the purpose of healing some diseases.

Plants have many active compounds, they are the richest bio-resource of drugs of traditional and modern medicine (Hammar et al., 1999), this medicinal value is based on some chemical substances that produce a definite physiological action on the human body and the most bioactive compounds of plants are flavonoids and tannins (Edeoga et al., 2005).

Algeria is one of the richest countries with plants because of its vast area and climate diversity, but still there are many species of plants that have a few studies are caring out about them, so in this study, we chose one of these plants, which is Cistanche tinctoria (Desf.) Beck. This plant is a rare traditional medicinal plant, it used as a treatment for abdominal pains, muscle contractions and other diseases. So, in this work we will try to figure out the biological activity of different extracts from the flowers of Cistanche tinctoria, and how we determine their antioxidant activity? And could we really classify it as a medicinal plant?

In order to find answers to those questions, we will study the parasitic plant Cistanche tinctoria (Desf.) Beck. (flowers), which belongs to the Orobanchaceae family and grows in Oued-souf region (south-east of Algeria), this will be based on preparing the extracts using the Maceration method, then we will determine the total phenolic and flavonoid contents of the crude extract, also we will estimate the antioxidant capacity using three different assays: DPPH radical scavenging assay, Hemolysis assay and Reducing power assay, and in order to figure out the phenolic compounds of the methanolic extract, we will use the HPLC technique.
The research was divided into two parts:

- **Bibliographic synthesis**: includes three chapters, the first one focuses on the study of the phenolic compounds, the second one was about oxidative stress and antioxidants and the third one was about the plant *Cistanche tinctoria* (Desf.) Beck, and its family.

- **Experimental part**: this part includes two chapters, the first chapter was about the materials and methods used during the whole study, and the second one was about the results of this research and their discussion.
First part

Bibliographic synthesis
Chapter I
Phenolic compounds
Chapter I: Phenolic compounds

1- Preface:

Secondary metabolites (Figure 01) are highly numerous in number and chemically diverse in nature (Li et al., 2014), they are defined as natural products (Bellebcir, 2008) which are differ in structure, function and quantity (Maksym, 2014) according to the type of plant (Ewane, 2012) or in the same plant (Loic, 2011). These products are actually not important for plant growth but they could be used for development under optimal growth conditions (Maksym, 2014). They can be classified in many ways, based on their chemical structure, composition, their solubility in various solvents, or pathway by which they are synthesized, but the simple classification includes three groups, one of them is: Phenolic compounds (Mudanda, 2010; Bellebcir, 2008; Carocho & Ferreira, 2013).

Figure (01): The three groups of secondary metabolites.

1- Phenolic compounds:
2-1- Definition:

Phenolic compounds are the most widely distributed secondary metabolites, ubiquitously present in the plant kingdom and their chemical structure is based on at least one aromatic ring bonded to one or more hydroxyl groups (Loic, 2011; Chanforan, 2010; بن سنة سلامة, 2012), they are mainly synthesized from the amino acid phenylalanine (Cooper &
Chapter I: Phenolic compounds

Nicola, 2015) which is converted to cinnamic acid, despite the structural diversity, the groups of compounds are often referred to as "Polyphenols" (Abedini, 2014).

These molecules represent a variety of functions in plant growth and development, they take a part in the regulation of seed germination, also taking part in defense responses during excessive sun exposure, injuries, infection and heavy metal stress (Renata et al., 2006; Kanoun, 2010; عمر، 2010)

They are derived from pentose phosphate, shikimate (Ncube & Staden, 2015), and phenylpropanoid pathways (Aberoumand & Deokule, 2008) in plants. These molecules are usually divided into two groups: simple phenols and more complex derivatives. Each one of these groups includes others ones (Boumendjel, 2007).

![Figure (02): The classification of phenolic compounds.](image)

2-2- Sources:

Phenolic compounds are very widespread in plant foods, especially in fruits, vegetables, grains, seeds, cereals, legumes and beverages such as coffee and fruit juice. (Duthie & Kyle, 2000; Benhammou, 2012).
Chapter I: Phenolic compounds

2-3- Classification:

As we said before, phenolics possess an aromatic ring bearing one or more hydroxyl groups and this ring or rings are synthesized in the shikimate acid pathway from amino acid phenylalanine (2004 بن خنانة). That is why phenolic compounds can be classified in a number of ways. According to Chanforn (2010), they classified into many groups based on the number of carbons in the molecule. (Table 01).

Table (01): The most important classes of phenolic compounds (Chanforan, 2010)

<table>
<thead>
<tr>
<th>Structure</th>
<th>Class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆</td>
<td>Simple phenolics</td>
<td>Catechol, Hydroquinone</td>
</tr>
<tr>
<td>C₆-C₁</td>
<td>Hydroxybenzoïque acids</td>
<td>P-hydroxybenzoïque</td>
</tr>
<tr>
<td>C₆-C₃</td>
<td>• Hydroxyxannamic acids</td>
<td>• caffeic acid</td>
</tr>
<tr>
<td></td>
<td>• Coumarins</td>
<td>• scopleine</td>
</tr>
<tr>
<td>C₆-C₄</td>
<td>Naphthoquinones</td>
<td>Juglone, plumbagim</td>
</tr>
<tr>
<td>C₆-C₂-C₆</td>
<td>Stilbenoids</td>
<td>Resvertrol</td>
</tr>
<tr>
<td>C₆-C₃-C₆</td>
<td>Flavonoids</td>
<td>• Quercetin</td>
</tr>
<tr>
<td></td>
<td>• Flavonols</td>
<td>• Catechin</td>
</tr>
<tr>
<td></td>
<td>• Flavanols</td>
<td>• Daidzein</td>
</tr>
<tr>
<td></td>
<td>• Isoflavonoids</td>
<td></td>
</tr>
<tr>
<td>(C₆-C₃)₂</td>
<td>Lignans</td>
<td>Pinoresinol</td>
</tr>
<tr>
<td>(C₆-C₃)ₙ</td>
<td>Lignins</td>
<td>/</td>
</tr>
<tr>
<td>(C₁₅)ₙ</td>
<td>Tannins</td>
<td>/</td>
</tr>
</tbody>
</table>

2-4- Role and importance of phenolic compounds:

There is a lot of studies have reported the advantages of phenolics, such as anti-aging, anti-inflammatory, antioxidant (Benhammou, 2012; Harkat, 2008). In addition to the above, there are relevant antioxidant enzymes to counter oxidants. Polyphenols, especially flavonoids, phenolic acids and tannins, have the important property of inhibiting α-
glucosidase and \(\alpha \)-amylase, which are key enzymes and responsible for the digestion of dietary carbohydrates to glucose. The high antioxidant capacity makes polyphenols as an important key factor which is involved in the chemical defense of plants and predators and in plant-plant interferences (Dixon and Pavia, 1995). Another valuable property of phenolic compounds is in their ability to chelate heavy metal ions such as iron and copper ions (Renata et al., 2006) due to the presence of suitable functional groups: hydroxyl and carboxyl (Michalaka, 2006).

Also phenolics are responsible for the color (such as yellow, red, blue pigments and orange), taste and flavor (such as eugenol and vanillin) of foods and protect the plant against insects, fungi, bacteria and viruses (Kanoun, 2010; Harkat, 2008; عمر، 2010)

2-5- Phenolics groups:
2-5-1- Simple phenols:
2-5-1-1- Phenolic acids:

Phenolic acids are simple molecules represented the basic unit of phenolic compounds, they consist 2 subgroups: the hydroxybenzoic and hydroxycinnamic acids (Sexena et al., 2012; بن سلامة، 2012; Kanoun, 2010). The phenolic acids have an interesting biological properties, and according to many studies, they have diverse functions including photosynthesis, enzyme activity, protein synthesis and structural compounds. A large number of phenolic acids present in vegetable foods, such as nuts and fruits (Boukri, 2014).

2-5-1-2- Flavonoids:

a. Definition:

The term "flavonoid" is generally used to describe a broad collection of natural products with low molecular weight and it is from the Latin word "Flavus" which means yellow (Harborne, 1973). Flavonoids were originally described as Vitamin "P" by Szent et al in 1936 (بن مرعاش، 2012).

Flavonoids are one of the largest groups of plant secondary metabolites. The general structure of a molecule is based on 15-carbon skeleton (connected by three-carbon bridge (C6-C3-C6) (Speisky, 1994; بكة وحفيان، 2015), which consists of two aromatic rings A and B linked via a heterocyclic benzopyran ring, where the 2-phenylchromane considered as the basic unit for it (Jiri et al., 2013; Athamena, 2009; بن سلامة، 2012).
b. Distribution of flavonoids:

Flavonoids are one of the most widespread groups of plant substances, they occur in the root, leaf, flowers, bark, fruits, vegetables, seeds and pollen also they exist in cacao, coffee and tea (Marfak, 2003). These compounds could be found as glycosides dissolved in water (حوقة ومغنى، 2016). About 2% of the total carbon photosynthesized are converted to Flavonoids which in turn contribute to the myriad bright colors in plant tissues (Markham, 1982).

c. Classification:

Flavonoids have been classified into a variety of classes: Chalcones, flavones, flavonols, flavandiols, flavanoles, isoflavonoids, proanthocyanidins and their derivatives anthocyanidins. The various classes of flavonoids differ in the level of oxidation and pattern of substitution of the ring C (Cindy, 2013) while individual compounds within a class differ in the pattern of substitution of the A and B rings (Bruneton, 1999; حوة ومغرني، 2016), their general structures are shown in the following figure (04).
d. Biological activity of flavonoids:

✓ Antioxidant activity:

Flavonoids possess many biochemical properties, but the best described property of almost every group of flavonoids is their capacity to act as antioxidants. The antioxidant activity of flavonoids depends upon the arrangement of functional groups on the nuclear structure (Pandey et al., 2012), the configuration, substitution, and total number of hydroxyl groups substantially influence several mechanisms of antioxidant activity such as radical scavenging and metal ion chelation ability (Nijveldt et al., 2001). This activity is due to a combination of the flavonoids's iron chelating and free radical scavenger properties, also the inhibition of oxidase enzymes such as lipoxygenase, NADPH oxidase and xanthine oxidase (Kumar & Pandey, 2013).

✓ Anticancer activity:

Fruits and vegetables are having an enormous amount of flavonoids, which have been used as cancer chemopreventive agents (Mishra et al., 2013). Flavonol quercetin is contained in dietary fruits and vegetables, especially onions and apples. Quercetin favonol is inversely associated with the incidence of cancer of the prostate, lung, stomach, and breast (Brisselmans et al., 2005). Many biological properties of flavonoids are sometimes proved to be cancer chemopreventive, for example: the natural resources of Anthocyanidins have the potential to fight against colorectal cancer, the sources of flavones (leek, kale, parsley, broccoli, pepper..) used to treat breast, thyroid, stomach, lung, oral and colon cancer.

Also the sources of isoflavonoids such as soy flour and soy milk fight against prostate, breast and kidney cancer, The mechanism of action of flavonoids in the molecular study is downregulation of mutant p53 protein, cell cycle arrest, tyrosine kinase inhibition, inhibition of heat-shock proteins, estrogen receptor bonding capacity and inhibition of expression of Ras proteins (Duthie et al., 2000).

✓ Anti-inflammatory activity:

Inflammation is the complex biological of vascular tissues to harmful stimuli, such as pathogens, damaged cells and chemical irritation. It is initiated by migration of immune cells from blood vessels and release of mediators at the site of damage. Many types of cells involved with the immune system have been shown to alter their behavior in the presence
Chapter I: Phenolic compounds

of flavonoids (Rathee et al., 2009). A number of flavonoids such as hesperdin, apigenin, luteolin and quercetin are reported to possess anti-inflammatory and analgesic effects. Flavonoids may affect specifically the function of enzyme systems critically involved in the generation of inflammatory processes, especially tyrosine and serine-threonine protein kinases (Nishizuka et al., 1988).

- **Antiviral activity:**

 In the last decade, many studies have been developed to figure out the antiviral activity of flavonoids, actually the most of these studies were concentrated about showing up the effect of flavonoids against human immunodeficiency virus (HIV). Most of the work related to antiviral compounds revolves around the inhibition of various enzymes associated with the life cycle of the virus. The studies show the ability of flavonoids to inhibit the multiplication of HIV virus by inhibiting HIV-1 reverse transcriptase (Harbone and Williams, 2000). In addition the flavonoids chrysin, acacetin and apigenin prevent HIV- activation via a novel mechanism that probably involves inhibition of viral transcription (Critchfield et al., 1996).

- **Antibacterial activity:**

 A lot of studies have realized the antibacterial activity of flavonoids, especially the ones with hydrophilic substituents such as prenyl groups, this activity depends on structure, namely on the substitution on the aromatic rings (Wenzel, 2013). Several flavonoids have been shown to possess potent antibacterial activity such as: flavones, flavanones, flavanoles, chalcones, isoflavonoids, bioflavonoids and galangin. The antibacterial mechanisms of flavonoids are summed as follows: inhibition of nucleic acid synthesis, inhibition of cytoplasmic membrane function, inhibition of energy metabolism, inhibition of the attachment and biofilm formation, inhibition of the porin of the cell membrane, alteration of the membrane permeability and attenuation of the pathogenicity (Xie et al., 2015).

e. **Importance of flavonoids in plants:**

 According to a lot of studies, flavonoids carry out functional roles of amazing significations in plant-environment interaction, one of these roles is protecting plants from germs and parasites also their ability to protect cell tissues from UV damage (Muhammad et al., 2011). In addition, flavonoids have been used as a way of classification based on the
Chapter I: Phenolic compounds

colors they give for fruits and flowers (Clugston et al., 2002), and they could regulate auxin movement and catabolism because of their ability to create auxin gradients translates into phenotypes with different morphtoanatomical features, so they have a role as a growth regulator (Taylor and Grotewold, 2005).

2-5-2- Complex phenols (tannins):

2-5-2-1- Definition of tannins:

The name “tannin” is derived from the French “Tanin” (tanning substance) and it is used for a range of natural polyphenols (Karamali and Teunis, 2001). According to Bate-Smith and Swain tannins are water-soluble phenolic compounds with a molar mass between 500 and 3000 (Haslam, 1989). They may be subdivided into:

 ✓ Hydrolysable tannins are derivatives of Gallic acid (3, 4, 5-trihydroxyl benzoic acid) (Vargas, 2009)
 ✓ Condensed tannins are usually referred to as Proanthocyanidins (Frutos et al., 2004),

![Figure (05): The basic structure of Tannis:](image)

a- Hydrolysable tannins, b- condensed tannins (Frutos et al., 2004).

2-5-2-2- Sources of tannins:

The main sources of tannins are: grape, muscadine grape, peach, blackberry, apple juice, raspberries, pomegranate, walnuts, olive, plum, haricot bean, chick-pea, lentils, tea, cocoa, coffee, chocolate and immature fruits (Balasundram et al., 2006).
Chapter 1: Phenolic compounds

2-5-2-3- Properties of tannins:

- They are widely distributed in plants and occur in especially high amounts in the bark of certain trees and in galls (Pradeep et al., 2006)
- Tannins can complex with proteins, starch, vitamins, and minerals at moderate pH and dissociate at lower pH (Juan Maria et al., 2017), and this ability of making complexes caused the leather tanning' property (Özeker, 1999).
- Because of their high chemical reactivity, tannins have played an important role in thermosetting systems for several decades, such as tannin-based adhesives and tannin-based foam material (Jingjing et al., 2019).
- They cause the bitter taste in immature fruits (Benhammou., 2012).
Chapter II

Oxidative stress &

Antioxidants
1- Oxidative stress:

The imbalance between pro-oxidant and antioxidants, called oxidative stress (Binghua et al., 2019). This is caused by lack of antioxidants or by the accumulation of free radicals, primarily the reactive oxygen species (ROS) and the reactive nitrogen species (RNS), after the stimulation of the endogenous and external environment, oxidative stress could lead to cell death and the dysfunction of physiology, which could ascribe to DNA damage, inflammation (Xiaole et al., 2019).

2- Free radicals:

2-1- Definition of free radicals:

A free radical is defined as any atom, molecule or a fragment of atoms and molecules with one or more unpaired electrons, capable of short independent existence (Tvrdá et al., 2017), they are uncharged, very reactive, and short-lived molecules of less than 10^{-6}s in biological systems. Some oxygen species known as reactive oxygen species, in fact they are non-reactive but they could generate free radicals (Godwill, 2018). Many studies show that free radicals cause a lot of oxidative damage to various molecules in living organisms such as: proteins, lipids and nucleic acids and these are involved in the interaction phases of many diseases such as: respiratory ailments, cancer, heart diseases, atherosclerosis and even neuronal death (Chun-Yung et al., 2018).

2-2- Types of free radicals:

They are generally classified into two major categories of compounds:

- Reactive oxygen species (ROS).
- Reactive nitrogen species (RNS).

Which includes the free radicals and the non-free radicals, where the first one are more reactive and less stable than the second one because they contain at least one unpaired electron in the shells around the aromatic nucleus (Godwill, 2018).
Table (02): Some examples of reactive oxygen and nitrogen species (Tvrdá et al., 2017).

<table>
<thead>
<tr>
<th>Reactive oxygen species (ROS)</th>
<th>Radicals</th>
<th>Symbol</th>
<th>Non-radicals</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superoxide</td>
<td>O$_2^\bullet$</td>
<td>Hydrogen peroxide</td>
<td>H$_2$O$_2$</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl radical</td>
<td>OH$^\bullet$</td>
<td>Hypochlorous acid</td>
<td>HOCl</td>
<td></td>
</tr>
<tr>
<td>Peroxyl radical</td>
<td>ROO$^\bullet$</td>
<td>Hypobromous acid</td>
<td>HOBr</td>
<td></td>
</tr>
<tr>
<td>Alkoxyl radical</td>
<td>RO$^\bullet$</td>
<td>Ozone</td>
<td>O$_3$</td>
<td></td>
</tr>
<tr>
<td>Hydperoxyl radical</td>
<td>HO$_2^\bullet$</td>
<td>Singlet oxygen</td>
<td>$^1\Delta_g$</td>
<td></td>
</tr>
<tr>
<td>Lipid peroxyl radical</td>
<td>LOO$^\bullet$</td>
<td>Lipid peroxide</td>
<td>LOOH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reactive nitrogen species (RNS)</th>
<th>Radicals</th>
<th>Symbol</th>
<th>Non-radicals</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric oxide</td>
<td>NO$^\bullet$</td>
<td>Nitrous acid</td>
<td>HNO$_2$</td>
<td></td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>NO$_2^\bullet$</td>
<td>Nitrosyl cation</td>
<td>NO$^+$</td>
<td></td>
</tr>
<tr>
<td>Nitroxy anion</td>
<td></td>
<td></td>
<td>NO$^-$</td>
<td></td>
</tr>
<tr>
<td>Dinitrogen tetroxide</td>
<td></td>
<td></td>
<td>N$_2$O$_4$</td>
<td></td>
</tr>
<tr>
<td>Dinitrogen trioxide</td>
<td></td>
<td></td>
<td>N$_2$O$_3$</td>
<td></td>
</tr>
<tr>
<td>Peroxynitrite</td>
<td></td>
<td></td>
<td>ONOO$^-$</td>
<td></td>
</tr>
</tbody>
</table>

2-3- Sources of free radicals:

Free radicals are produced either from normal cell metabolism in situ, which means internal sources or from external sources (Sultan, 2014):

2-3-1- Internal sources:

a- Mitochondria:

They are known as "powerhouse of a cell", because they are responsible for 90% of the energy production in cells (Ozcan and Ogun, 2014). In addition, mitochondria are the main source of reactive oxygen species (Tsolaki et al., 2017), because there are about 90% to 95% of cellular oxygen is used up in oxidative phosphorylation and 3% from that pool can be converted to superoxide. Also, mitochondria produce H$_2$O$_2$ and OH$^\bullet$ by Fenton reaction and dismutation of O$_2$ (Ozcan and Ogun, 2014).
Chapter II: Oxidative stress & Antioxidants

Figure (06): Production and disposal of mitochondria ROS (Li et al., 2013)

b- NADPH oxidase:

The NADPH oxidase is the major enzymatic source of ROS generation in cells (Ozcan and Ogun, 2014). Using the NADPH as the electron donor, the NADPH oxidase catalyzes the production of superoxide by the reduction of oxygen by the following reaction:

\[
\text{NADPH}^+ + 2O_2 \rightarrow \text{NADP}^+ + H^+ + 2O_2
\]

Figure (07): Schematic diagram of the structure of the active NADPH oxidase complex (Ozcan and Ogun, 2014).

c- Lipoxygenases:

This enzyme is one of ROS sources in blood vessel walls (Koushishi, 2009), also, it intervenes in the production of some kinds of ROS by stimulating the LBs and this is proved by some studies in the last few years (Werz et al., 2000), which suggest that LTB4 treatment of fibroblasts and neutrophils results in ROS generation (Ozcan and Ogun, 2014).
Chapter II: Oxidative stress & Antioxidants

2-3-2- External sources:

According to Sultan (2014), these are some of the external sources of free radicals:

- Environmental pollutants
- Cigarette smoke.
- Radiations.
- Certain drugs.
- Industrial solvents.
- Alcohol.
- Ultraviolet light.
- Ozone.
- Pesticides.
- Anesthetic solvents.

2-4- Damages of free radicals:

In fact, free radicals with a little concentration have a very important physiological roles, for example expansion of blood vessels (Faivaier, 2003), but the continual influx and generation of ROS either from internal or external sources would cause an oxidative damage of cellular components and may impair many cellular functions (Godwill, 2018), this damage could be in:

2-4-1- Lipids:

As we know cellular membranes are highly rich in unsaturated fatty acid, that is why they are vulnerable to oxidative damage this damage has three stages and in general is known as lipid peroxidation (Meral et al., 2000).

2-4-2- Proteins:

Proteins are the most targets for attack by ROS predominantly by the OH\(^{\bullet}\), RO\(^{\bullet}\) and nitrogen-reactive radicals causing damage. Hydrogen peroxide and superoxide radicals have weak effects on proteins except for proteins containing SH groups. Following the oxidation, proteins are susceptible to many changes in their function which include inactivation, chemical fragmentation (Godwill, 2018).
Chapter II: Oxidative stress & Antioxidants

2-4-3- DNA:

DNA is a very sensitive molecule for ROS, which can cause several types of damages for it, such as: modification of DNA bases, loss of purines (apurinic sites), DNA-protein cross-linkage, damage to the deoxyribose sugar and damage to DNA repair system (Godwill, 2018).

Figure (08): Reactive oxygen species (ROS)-induced oxidative damage (Kohen and Nyska, 2002)

3- Antioxidants:

3-1- Definition of antioxidants:

Antioxidants are defined as molecules that dispose, scavenge and inhibit the formation of ROS or oppose their actions (Tvrdá et al., 2017). In other words, antioxidants are chemicals that bind with free radicals and nullify their effect from causing damage to biological molecules, they bind with them by giving up their own electrons. These results in the termination of oxidative chain reactions, and the free radicals are no longer able to attack the cell. Antioxidant attains free radicals state after donating its electron. It can accommodate the change in electrons without becoming reactive, and that is why they are not harmful (Rizwan, 2018).

3-2- Classification of antioxidants:

Antioxidants can be divided into two dominant categories based on their sources:

Natural antioxidants & Synthetic antioxidants.
Chapter II: Oxidative stress & Antioxidants

3-2-1- Natural antioxidants:

According to Godwill (2018), this category is the most important because they directly act on free radicals either by decomposing, scavenging or converting free radicals to less reactive forms. This defense mechanism involves 2 groups:

3-2-1-1- Enzymatic antioxidants:

The enzymatic antioxidants include superoxide dismutase (SOD), catalase, glutathione reductase (GRx) and glutathione peroxidase (GPx).

a- Superoxide dismutase (SOD):

Superoxide dismutases are metal-containing enzymes that catalyze the conversion of two superoxides into oxygen and hydrogen peroxide, which is less toxic than superoxide (Tvrdá et al., 2017).

In other words, SOD are proteins which stimulate the dismutation of superoxide to hydrogen peroxide according to the following reaction formula (Serrano and Klann, 2004):

\[
\text{O}_2^- + 2\text{H}^+ \xrightarrow{\text{SOD}} \text{H}_2\text{O}_2 + \text{O}_2
\]

They exist in three forms in mammalian tissues and tissue distribution (Godwill, 2018):

- Copper zinc superoxide dismutase (CuZnSOD).
- Manganese superoxide dismutase (MnSOD).
- Extracellular superoxide dismutase (ECSOD).

b- Catalase (CAT):

Catalase catalyzes the decomposition of hydrogen peroxide to molecular oxygen and water, thereby completing the detoxifying reaction started by SOD (Tvrdá et al., 2017).

Actually, catalase was the first antioxidant enzyme to be characterized (Shalini and Sivakumar, 2015). It is located mostly within the peroxisomes of cells which contain most of the enzymes capable of generating hydrogen peroxide. It consists of four protein subunits, each containing a heme group and molecule of NADPH (Godwill, 2018; Shalini and Sivakumar, 2015).
Chapter II: Oxidative stress & Antioxidants

It may be found in bone marrow, heart, kidney, liver, blood and mucous membranes (Januel, 2003), also in mitochondria and endoplasmic reticulum (Tvrdá et al., 2017).

c- Glutathione reductases (GRx):

GRx is a flavine nucleotide dependent enzyme (Shalini and Sivakumar, 2015) and it has a similar tissue distribution to glutathione peroxide (Godwill, 2018). It has been found in the prostate gland, seminal vesicles, sertoli cells (Tvrdá et al., 2017).

The role of GRx is to generate GSH from GSSG using NADPH in order to increase the ratio of reduced to oxidized glutathione (Godwill, 2018; Shilina, 2009).

d- Glutathione peroxidases (GPx):

They are a family of selenium-containing enzymes, which catalyze the reduction of \(\text{H}_2\text{O}_2 \) and organic peroxides, including phospholipid peroxides (Tvrdá et al., 2017).

It has been found in liver, kidney and highly found in almost all tissues. Its subcellular location is usually the cytosol and mitochondria, it catalyzes the oxidation of reduced glutathione (GSH) decomposing hydrogen peroxide or another species such as: hydrogen peroxide and lipid hydroperoxide, acts as substrates for these enzymes (Godwill, 2018; Shalini and Sivakumar, 2015).

e- Other enzymatic antioxidants:

Superoxide dismutase (SOD), catalase, glutathione reductase (GRx) and glutathione peroxidase (GPx) were the most known enzymatic antioxidants, but there are other enzymes may also participate in the enzymatic control of oxygen radicals and their products. Tvrdá et al (2017) have given an examples about them such as: Glutathione S-transferase (GST), Ceruloplasmin, Transferring and Heme oxygenase (HO).

3-2-1-2- Non-enzymatic antioxidants:

They are also known as synthetic antioxidants or dietary supplements (Tvrdá et al., 2017), they are usually low-molecular-weight antioxidant (LMWA) compounds capable of preventing oxidative damage either by directly interacting with ROS or indirectly by chelating metals (Godwill, 2018).
They include:

a- Glutathione (GSH):

It is an endogenous tripeptide that protects the cells against free radicals by donating either a hydrogen atom or an electron (Shalini and Sivakumar, 2015). It is the most abundant thiol protein in mammalian cells, this molecule has three precursors: cysteine, glutamine acid and glycine (Tvrdá et al., 2017). Glutathione exists as GSH in its reduced form and 2 of GSH molecules can be joined via oxidation at their SH groups of the cysteine residue into a disulfide bridge to form GSSG which is the oxidized form (Godwill, 2018).

b- Vitamin C:

This vitamin is considered one of the organism's most powerful antioxidant agent due to its capacity to donate two electrons from its double link at positions two and three, in such a way that it interacts with FR, blocking their harmful effect (Morals-González et al., 2012). It is a water-soluble vitamin, and it is one of the important molecules which human body need (Can and Freie, 1999) it is widely distrubted in various tissues (Zaho et al., 2019). This molecule acts by scavenging the superoxide radical anion, hydrogen peroxide, hydroxyl radical, singlet oxygen and reactive nitrogen oxide. Vitamin C has been found in citrus fruits, peppers, strawberries, tomatoes, broccoli, Brussels sprouts and other leafy vegetables (Tvrdá et al., 2017).

c- α-tocopherol (Vitamin E):

It is a fat-soluble vitamin with high antioxidant properties (Zaho et al., 2019). Vitamin E involves 2 subgroups: tocopherols and tocotrienols (Mozos et al., 2017; Tvrdá et al., 2017), both of these subgroups can further be divided into four lipophilic molecules which means there are eight isoforms of Vitamin E (Zaho et al., 2019; Shalini and
Sivakumar, 2015). The major difference between tocopherols and tocotrienols is the side chain, the first one has a saturated phytol tail, while the second one possesses an unsaturated side chain (Zaho et al., 2019).

Vitamin E plays a function as an efficient "chain breaker" during lipid peroxidation in cell membranes and various lipid particles including low-density lipoprotein (LDL). Its role is to scavenge lipid peroxyl radicals and to terminate the lipid peroxidation chain reactions (Godwill, 2018). This vitamin has been found in high concentrations in palm oil, rice bran and oily plants (Mozos et al., 2017).

Figure (10): Chemical structure of Vitamin E (α-tocopherol)

(Morals-Gonzláes et al., 2012).

d- Retinol (Vitamin A):

Vitamin A, also called trans-retinol, is an isoprenoid alcohol that performs several important functions in the organism. (Morals-Gonzláes et al., 2012). It is produced as a result of the breakdown of β-carotene and is a carotenoid produced in the liver (Shalini and Sivakumar, 2015). As such, it is considered as a vital antioxidant that prevents human LDL against copper stimulated oxidation, eliminates FR and protects the DNA in its mutagenic action (Godwill, 2018; Morals-Gonzláes et al., 2012).

Figure (11): Chemical structure of Vitamin A (Retinol) (Morals-Gonzláes et al., 2012).

e- Other non-enzymatic antioxidants:

There are other substances which may contribute to the maintenance of oxidative homeostasis such as: bioflavonoids, flavonoids, carotenoids, lycopene,
hydroxyciannamates, catnitine, taurine, selenium, albumin, uric acid, lipoic acid,(Godwill, 2018; Tvrdá et al., 2017).

Figure (12): Diagrammatic representation of the site of enzymatic and non-enzymatic antioxidants (Shalini and Sivakumar, 2015).

3-2-2- Synthetic antioxidants:

They are chemically synthesizing compounds since they do not occur in nature (Atta et al., 2017). Butylhydroxyanisol (BHA), Butylhydroxyltoluene (BHT), Propyl gallate (PG) and Tertiary butyl hydroquinone (TBHQ) are types of synthetic antioxidants, which used as additives in foods to prevent oxidation of lipid (Gul et al., 2013).

Figure (13): Structures of some synthetic antioxidants (Atta et al., 2017).
Chapter III

A taxonomic study of Cistanche tinctoria (Desf.) Beck
Chapter III: A taxonomic study of *Cistanche tinctoria* (Desf). Beck

1- Presentation of the Orobanchaceae family:

The Orobanchaceae family (in English: Broomrape) is one of only a dozen families of angiosperms in which the parasitic habit is known (parasitic plants), it is the largest family of haloparasitic flowering plant. This family comprises about 2060 species in 90 genera. The family has a cosmopolitan distribution, but the main places are the Mediterranean, western and central Asia, northern Africa and North America (Piwowarczyk and Madeja, 2014; Thieret, 1971).

The Orobanchaceae are plants whose calyx are campanulate (4-5 meters), the corolla more or less labiate, the stamens didynamous, the glandular ovary in its inner base, the capsule is unilocular with 2 free valves, each of them carrying two longitudinal placentas loaded with seeds. The members of this family are achlorophyllous, consisting of a fleshy body with spike or raceme inflorescence. They are all root-parasitic plants and obtain water and nutrients from hosts via their invading haustoria (Chen and Hsiao, 2011; Quezel and Santa, 1963).

1- Presentation of the genus *Cistanche*:

The genus *Cistanche* which belongs to the family Orobanchaceae includes 16 species. They form an attractive group of phanerogamic root parasites. The occurrence of the genus is restricted to certain arid and semi-arid regions of Africa, Asia and the Mediterranean area, including parts of Southern Europe (Ramadam et al., 2010).

![External morphology of the genus *Cistanche*](image)

Figure (14): External morphology of the genus *Cistanche* (Ozenda et Capdepon, 1977).
Chapter III: A taxonomic study of *Cistanche tinctoria* (Desf). Beck

2- Presentation of the plant *Cistanche tinctoria*:

3-1- Definition:

Cistance tinctoria (figure 15) is a parasitic plant like all members of the Orobancheaceae family, it is chlorophyll-free, obligate parasitic (Ozenda, 1977). The flowers are bright yellow and distributed throughout the plant in brown tones, the leaves are lanceolated, reduced to brownish scales, This plant is gathered from the wild and used locally in foods (2007، حليس), stem is thick with height 30 to 120 cm (Ozenda, 1977).

The vernacular Arab name is EL-tarthouth (2007، حليس) and this plant quite common in high plateaus and in northern Sahara and it is rarer in western, central and southern Sahara (Ozenda, 1977).

![Figure (15): Cistanche tinctoria (original photos).](image)
Chapter III: A taxonomic study of *Cistanche tinctoria* (Desf). Beck

3-2- Classification:

According to Ould Saadi (2016), the classification of *Cistanche tinctoria* is:

<table>
<thead>
<tr>
<th>Kingdom:</th>
<th>Plantae.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subkingdom:</td>
<td>Tracheophyta.</td>
</tr>
<tr>
<td>Division:</td>
<td>Angiosperms.</td>
</tr>
<tr>
<td>Class:</td>
<td>Dicotyledons</td>
</tr>
<tr>
<td>Order:</td>
<td>Lamials.</td>
</tr>
<tr>
<td>Family:</td>
<td>Orobanchaceae.</td>
</tr>
<tr>
<td>Genus:</td>
<td>Cistanche.</td>
</tr>
<tr>
<td>Specie:</td>
<td>tinctoria.</td>
</tr>
</tbody>
</table>

3-3- Distribution of *Cistanche tinctoria*:

<table>
<thead>
<tr>
<th>Local:</th>
<th>In high plateaus and in northern Sahara and it is rarer in western, central and southern Sahara (Ozenda, 1977).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional:</td>
<td>North Africa.</td>
</tr>
<tr>
<td>In the whole world:</td>
<td>North Africa (Ould Saadi., 2016).</td>
</tr>
</tbody>
</table>

3-4- Traditional uses:

As a rare traditional medicinal plant, the dried whole plant is used for the treatment of abdominal pains, diarrhoea, muscle contractions and bruises (Bouzitouna et al., 2015). Also the underground part of young shoots of the plant is useful against intestinal problems and diabetes (Lakhdari et al., 2016). In Tissint region (Marroco), the local people applied the powder of the plant for injuries and in Egypt the dry powder mixed with camel's milk and used for bruising. (Bouzitouna et al., 2015).

In addition to the medicinal virtues of this plant, its shots and stems had been used for food application. Nomades in southern Morocco and Algeria eat the lower part of the plant, they mixed it with cereals to make a kind of oatmeal or bread (Bouzitouna et al., 2015; حليس، 2007). Also, it is used for tanning and dyeing leathers (Bouzitouna et al., 2015).
Second part

Experimental part
Chapter I
Materials & Methods
Chapter I: Materials & Methods

1- Materials:
1-1- Plant materials (*Cistanche tinctoria*):

In this study, we used the flowers of *C.tinctoria* (Desf). Beck, which have been collected during the flowering period (29th March. 2018), from Taleb Larbi region (figure 16), (33°42'27.8"N) and (07°18'57.1" E) that affiliated regionally to El-oued state and it’s located about 60 km toward the Tebessa road.

![Figure (16): the place of collecting the flowers of *C.tinctoria*](image)

1-2- Materials and methods used in preparing the plant materials:

In order to prepare the plant sample, we followed the steps in the table below:

Table (03): Materials and methods used for preparing the plant materials

<table>
<thead>
<tr>
<th>Methods used</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collecting</td>
<td>The flowers of the plant have been collected during the flowering period.</td>
</tr>
<tr>
<td></td>
<td>- Scissors.</td>
</tr>
<tr>
<td></td>
<td>- Plastic bags.</td>
</tr>
<tr>
<td>Drying</td>
<td>The collected plant material was air-dried at room temperature for 3 to 4 weeks.</td>
</tr>
<tr>
<td></td>
<td>- Clean cloth.</td>
</tr>
</tbody>
</table>
Grinding

After drying, the plant material has been ground by mechanical grinder to get a fine powder, this powder was stored at room temperature in airtight containers protected from bright light until the beginning of the experiment.

- Mechanical grinder.
- Airtight containers.

2- Methods:

2-1- Preparation of the methanolic extract of *C. tinctoria*:

Ten grams (10g) of dry plant were macerated with 150 ml of methanol at room temperature in dark for 24 hours. After filtration, using the filter paper, the solvent was evaporated to dryness under reduced pressure in a rotary evaporator at 50°C, to get the crude extract, which was stored in a place protected from bright light and humidity (Bouchouka, 2016).

Figure (17): Protocol of preparation of crude extract.
Chapter I: Materials & Methods

2-2- Extraction of Flavonoids:

Ten grams (10g) of dry matter were macerated with 150 ml of methanol at room temperature in dark for 24 hours. After filtration, using the filter paper, the solvent was evaporated under reduced pressure in a rotary evaporator at 50°C until we get the methanolic extract. Then, we added to this extract a volume of 150 ml of warm distilled water and 150 ml of Ethyl acetate and we put the new mixture in a separator funnel. After the separation of the mixture, we got two phases: Ethyl acetate phase and Aqueous phase, then we take the first one and evaporated it in a rotary evaporator at 50°C to get the Flavonoids extract (phase Ethyl acetate). (Bekkara et al., 1998).

Figure (18): Protocol of extraction of flavonoids.
2-3- Extraction of Tannins:

Thirty grams (30g) of dry matter were macerated with 60 ml of distilled water and 140 ml of Acetone at room temperature in dark for 72 hours (3 days). After filtration, using the filter paper, the solvent was evaporated under reduced pressure in a rotary evaporator at 50°C to remove acetone. Then, we added 150 ml of Dichloromethane to the remaining solution to remove lipid-soluble substances, then, we put the whole mixture in a separatory funnel for about 2 hours. After the separation of organic phase (upper phase) and aqueous phase (lower phase) by separatory funnel, the first one (upper phase) was further extracted with Ethyl acetate (150 ml) and evaporated to dryness at 50°C. This extraction has been done according to the modified method described by Zhang et al (2008).

Figure (19): Protocol of extraction of Tannins.
2-4- **Determination of extraction yield:**

According to Truong et al (2019), The extraction yield is calculated by the following formula:

\[
\text{Extraction yield } \% = \left(\frac{\text{weight of the extract}}{\text{weight of the initial matter}} \right) \times 100
\]

2-5- **Determination of total phenolic contents (TPC):**

The total phenolic contents of the crude extract were determined according to the Folin-Ciocalteu's phenol reagent method of Singleton-Rossi with some modification, this method is based on the redox reaction of the reagent forming a blue color pigment (Silberstein et al., 2019).

As a first step and in a test tube, we mixed 0.2 ml of the extract with 1 ml of Folin-Ciocalteu reagent diluted 10 times with water, then we added 0.8 of sodium carbonate solution (7.5%). After stirring the test tubes we let them rest for 30 min, the absorbance was measured at 765 nm using the spectrophotometer (Rahmani et al., 2018).

The same procedure was repeated for all standard Gallic acid solutions at different concentrations.

We used Gallic acid as a standard for the calibration curve. The total phenolic content was expressed as Gallic acid equivalents (mg of Gallic acid equivalents in 1 g of extract).

2-6- **Determination of total flavonoid contents:**

According to Boudjouref et al (2014), in a test tube, we blended 1 ml of the sample solution with 1 ml of aluminum trichloride methanolic solution (2%). After stirring the test tubes, we let them rest for 10 to 15 min at room temperature.

The same procedure was repeated for the standard Quercetin solutions at different concentrations.

Based on the measured absorbance 430 nm, the concentration of flavonoids was read (mg/ml) on the calibration line; then, the content of flavonoids in the extract was expressed in terms of Quercetin equivalent (mg of QE/g of extract).
Chapter I: Materials & Methods

2-7- Evaluation of Antioxidant activity:

Antioxidant activity is a complex procedure usually happening through several mechanisms and is influenced by many factors, which cannot be fully described with one single method. Therefore, it is essential to perform more than one type of antioxidant capacity measurement to take into account the various mechanisms of antioxidant action. In this study, three complementary tests were used to assess the antioxidant activity of *Cistanche tinctoria*: the first one is DPPH assay, which is one of the most widely used method for screening the antioxidant activity of plant extract *In vitro*, while the second test was Hemolysis test as *In vivo* test, and the last one was Reducing power assay.

2-7-1- DPPH scavenging assay:

DPPH (2,2-diphenyl-1-picrylhydrazyl) is stable chromogenic radical with a deep purple color, and because of its simplicity and sensitivity, The DPPH assay has become one of the most frequently used methods and offers the first approach for evaluating the antioxidant activity.

The DPPH scavenging assay is based on electron donation of antioxidants to neutralize DPPH radical. The reaction is accompanied with color change of the DPPH measured at 517 nm, and the discoloration acts as an indicator of the antioxidant efficacy (Chavan, 2018).

![Figure (20): Principle of DPPH radical scavenging capacity assay (Teixeira et al., 2013)](image)

- **DPPH protocol:**

 The DPPH scavenging activity of the extracts was measured by using the modified method of Brand-Williams et al (1995). A volume of 1 ml of each extract at different concentrations was added to 1 ml of DPPH solution (0.1mM: 4mg/100ml) in methanol.
Chapter I: Materials & Methods

After incubation for 10-15 min at room temperature, the absorbance of the reaction mixture was measured at 517 nm. In this test, Ascorbic acid (AA) was used as a reference standard.

According to Monowar et al (2019), the percentage of inhibition was calculated by using the following formula:

\[
\text{DPPH radical scavenging inhibition \%} = \left(\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100
\]

Where:
- \(A_{\text{control}} \): Absorbance of the control reaction.
- \(A_{\text{sample}} \): Absorbance of the reaction mixture containing DPPH and sample.

❖ Determination of IC\textsubscript{50} values:

\(IC_{50} \) values were calculated from the plotted of scavenging activity against the concentrations of the samples. \(IC_{50} \) is defined as the total antioxidant necessary to decrease the initial DPPH radical by 50 %. \(IC_{50} \) was calculated for all the extracts based on the percentage of DPPH radicals scavenged (Gaikwad et al., 2011).

2-7-2- Hemolysis assay:

This test is used to determine the ability of the plant extracts to protect the erythrocyte blood cells from damage or disruption of the cell membrane after exposing them to oxidative stress and free radicals by measuring the percentage of dissolved erythrocytes.

❖ Hemolysis assay protocol:

According to Abirami et al (2014), a volume of 40 \(\mu \)l of erythrocytes of blood (the blood sample was obtained from healthy human) was mixed with 2 ml of plant extract, this solution was conserved for 5 min at 37 °C. Then, we added 40 \(\mu \)l of \(\text{H}_2\text{O}_2 \) (30\(\times 10^{-3} \) Mol), 40 \(\mu \)l of \(\text{FeCl}_3 \) (80 \(\times 10^{-3} \) Mol) and 40 \(\mu \)l of Ascorbic acid solution (50 \(\times 10^{-3} \) Mol) respectively to the jumble.

After 1 hour of incubation at 37°C, the mixture was centrifuged with 700 Tour/min for 10 min. The absorbance of the upper layer (supernatant) was read at \(\lambda = 540 \) nm.
Chapter I: Meterials & Methods

The percentage of hemolysis was determined using the following formula:

\[
\text{Hemolysis\%} = \left(\frac{A_{\text{control}}}{A_{\text{sample}}} \right) \times 100
\]

Where:

- \(A_{\text{control}} \) is the absorbance in the absence of the extract.
- \(A_{\text{sample}} \) is the absorbance in the existence of the extract.

2-7-3- Reducing power assay:

The reducing power assay is often used to evaluate the ability of an antioxidant to donate an electron. The presence of antioxidants in the extracts resulted into reduction of the ferric cyanide complex (Fe\(^{3+}\)) to the ferrous cyanide form (Fe\(^{2+}\)) (Irshad et al., 2012).

(Singhal et al., 2011).

In reducing power assay, antioxidants cause the reduction of the Fe\(^{3+}\) into Fe\(^{2+}\), thereby changing the solution into various shades from green to blue, depending on the reducing power of the compounds. Strong reducing agents, however, formed a blue color and absorbed at 700 nm.

\begin{itemize}
\item Reducing power protocol:
\end{itemize}

In test tubes, a volume of 0.5 ml of the extracts was added to 1.25 ml of a phosphate buffer (0.2 M, pH 6.6) mixed with 1.25 ml of potassium ferrocyanide (1%). The mixture was incubated in a hot bath at 50°C for 20 min. During this time of incubation, the reaction of reduction of Fe\(^{3+}\) to Fe\(^{2+}\) of each sample proceeds perfectly.

After 20 min of the incubation, the reaction is stopped by adding 1.25 ml of trichloroacetic acid (10%), the tubes were then centrifuged at 3000 rpm for 10 min. We collected a volume of 1.25 ml of the upper layer (supernatant), mixing it with 0.25 ml of FeCl\(_3\) (0.1%) and diluting it with 1.25 ml of distilled water, the optical density was read at 700 nm (Kemewele Saague et al., 2019). Ascorbic acid (AA) was used as a positive control.
Chapter I: Materials & Methods

2-8- High Performance Liquid Chromatography (HPLC):

High Performance Liquid Chromatography, which is also known as High Pressure Liquid Chromatography. It is a popular technique used the separation, identification and quantification of each constituent of a mixture (Thammana, 2016). HPLC is based on the interaction between the analytes, a solid stationary phase and liquid mobile phase. By choosing the proper mobile phase and stationary phase chemistries, analytes can be separated based on hydrophobicity, size, charge and many other properties (Belkacem, 2009).

Principle of work:

According to Chouikh et al (2018), the principal work of HPLC was:

- 20 µl of plant extract solution (crude extract) was injected into the flow of mobile phase.
- Adjusts the high pressure that drives the mobile phase solvent in the column that separates the compounds of the mixture on the basis of their polarity by using a pump.
- The separated compounds shall be determined using the detector which connected to the column and to the computer which records the results as curves characterized by the numbers of the sample’s compounds.
Chapter II

Results

Discussion
Chapter II: Results & Discussion

1- Results:

1-1- Determination of extraction yield:

After the extraction processes, the extraction yield had been determined using the formula described by Truong et al (2019) and the results are shown in the table below:

<table>
<thead>
<tr>
<th>The extract</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>11.26</td>
</tr>
<tr>
<td>Flavonoids extract</td>
<td>1.34</td>
</tr>
<tr>
<td>Tannin extract</td>
<td>0.505</td>
</tr>
</tbody>
</table>

Table (04): Percentage yield of each extract.

According to these results, the yield of the three extracts (Crude, Flavonoid phase Ethyl acetate and Tannin) was estimated with a variance in its values, the highest value recorded in the Crude extract (11.29 %), followed by Flavonoids extract (Ethyl acetate phase) (1.34%), however the Tannins extract got the lowest value (0.505%).

1-2- Total phenolic and flavonoid contents:

TPC contents is the process to figure out the amount of phenolic content in the samples. The phenolic level was determined by the Folin-Ciocalteu assay, as described by Rahmani et al (2018).

A calibration curve of standard reference was established using Gallic acid as a standard reference plotted.
Chapter II: Results & Discussion

Figure (21): A linear calibration curve of Gallic acid (standard) in the total phenolic assay.

TPC was revealed as Gallic acid equivalents (the mg of Gallic acid corresponding to the polyphenols present in 1 g of extract).

Total flavonoids were determined using the modified aluminum chloride colorimetric method of Boudjouref et al (2014), where Quercetin was used as a reference standard to estimate flavonoid content.

Figure (22): A linear calibration curve of Quercetin (standard) in the total flavonoid assay.
Chapter II: Results & Discussion

According to the results shown in the table (05), the total phenolic contents in the Crude extract were 167.74 ± 24.36 (mg GAE/g Ex) and the content of flavonoids in was 26.76 ± 2.69 (mg QE/g Ex).

Table (05): Total phenolic and flavonoid contents in crude extract.

<table>
<thead>
<tr>
<th>Sample extract</th>
<th>Total phenolic contents (mg GAE/g Ex)</th>
<th>Total flavonoid contents (mg GAE/g Ex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>167.74 ± 24.36</td>
<td>26.76 ± 2.69</td>
</tr>
</tbody>
</table>

1-3- Evaluation of Antioxidant activity:

There are a number of in vitro and in vivo assay methods for evaluating antioxidant properties of compounds. In the present study, DPPH radical scavenging assay, Hemolysis assay and reducing power assay were carried out to assess the antioxidant potentials of the extracts of *Cistanche tinctoria*.

1-4-1- DPPH scavenging assay:

In order to evaluate the antioxidant activity of *C. tinctoria*, we used the DPPH test because it is one of the best-known, accurate and frequently employed methods for evaluating antioxidant activity. In this study, Ascorbic acid (AA) was used as a standard compound. (Figure 23).
Chapter II: Results & Discussion

Figure (23): A linear calibration curve of Ascorbic acid (standard) in the DPPH radical scavenging assay.

The following chart presents the DPPH radical scavenging capacity of all the extract (Crude, Flavonoid and Tannin) and the positive control AA at concentration 10 µg/ml.

Figure (24): Values of antioxidant activity of extracts of *Cistanche tinctoria* and standard compound (AA) with C =10 µg/ml

At concentration 10 µg/ml, The results showed that the extracts and the standard compound had a different DPPH radical scavenging activity, the Tannins extract marked a high value (59.66%) and it was so close to the value marked by of Ascorbic acid (64.72%). On the other hand, the other two extracts (crude extract and flavonoid extract) had recorded low and convergent values (17.16% and 21.54%), respectively.
Chapter II: Results & Discussion

The IC\textsubscript{50} value was determined from the plotted graph of scavenging activity against various concentrations of extracts, which is defined as the efficient concentration of antioxidant necessary to decrease the initial DPPH radical concentration by 50 % (Figure 25). The lowest IC\textsubscript{50} indicates the strongest ability of the extracts to act as DPPH radical scavengers.

![Graph of IC\textsubscript{50} values for different extracts and Ascorbic acid (AA)](image)

Figure (25): The IC\textsubscript{50} values (DPPH- test) (µg/ml) of the extracts of *C.tinctoria* and the standard compound (AA).

According to figure (25), out of all the extracts, Tannin extract showed the lowest IC\textsubscript{50} (8.12 µg/ml), whereas Crude extract and Flavonoid extract showed low and convergent values (22.52 µg/ml and 19.8 µg/ml), respectively.

Ascorbic acid showed the highest DPPH radical scavenging with IC\textsubscript{50} of 5.41 µg/ml.

1-4-2- Hemolysis assay:

In order to evaluate the antioxidant activity of extracts of *Cistanche tinctoria*, we used the Hemolysis assay because it is one of the most easiest assays for this purpose, the percentage of Hemolysis has been identified in the whole extracts (figure 26).
Figure (26): A linear calibration curve of Ascorbic acid (standard) in Hemolysis assay.

\[y = -50.211x + 67.301 \]
\[R^2 = 0.9609 \]

Figure (27): A linear calibration curve of Crude extract in Hemolysis assay.
Chapter II: Results & Discussion

Figure (28): A linear calibration curve of Flavonoid extract in Hemolysis assay.

Figure (29): A linear calibration curve of Tannin extract in Hemolysis assay.

According to the results shown in figures 26, 27, 28 and 29, we noticed that there is an inverse relation between the percentage of Hemolysis and the concentration of extracts, which means, whenever the concentration of the extract get increased, the percentage of hemolysis decreases.
Chapter II: Results & Discussion

The figure (30) shows the percentage of hemolysis at concentration 1 mg/ml, according to the results described in it, the Ascorbic acid got the lowest percentage of hemolysis (17.08%), while the three extracts: crude, flavonoid and tannin extract had a convergent disintegration; their percentage of hemolysis were: 33.49%, 22.47% and 43.71%, respectively.

Figure (30): Rate of Hemolysis of the extracts of *Cistanche tinctoria* and Ascorbic acid with C=1mg/ml

1-4-3- Reducing power assay:

In the reducing power assay, the presence of reductants (antioxidants) in the fractions would bring about reduction of ferricyanide complex (Fe$^{3+}$) to the ferrous form (Fe$^{2+}$) by giving away an electron. Increasing the absorbance at 700 nm implies an increase in its ability to reduce, so the purpose of reducing power assay is to evaluate the ability of *Cistanche tinctoria* extracts to reduce Fe$^{3+}$ to Fe$^{2+}$. In this assay we used the Ascorbic acid as a reference standard.
Chapter II: Results & Discussion

Figure (31): A linear calibration curve of Ascorbic acid in Reducing power assay.

\[
y = 4.5216x + 0.4511 \\
R^2 = 0.9821
\]

Figure (32): Column graph of reducing power assay of extracts and AA with
\[C = 0.1 \text{mg/ml}\]

Figure (33) shows that the tannin extract had the highest reducing power (for iron ions) between the extracts of *Cistanche tinctoria* (Desf). Beck, with \[C = 0.1 \text{ mg/ml}\], and it showed that the reducing power of all extracts increases with increase in concentration. These results were calculated using the annex number 3.
1-5- High Performance Liquid Chromatography (HPLC):

HPLC is one of the most important technique used for analysis and separation of the various phenolic compounds. The chromatogram of the methanolic extract (crude extract) of *C. tinctoria* shows that it contains some phenolic compounds. (Figure 33 , tables 06 and 07).

![Chromatogram of methanolic extract of C.tinctoria](image)

Figure (33): Chromatogram of methanolic extract of *C.tinctoria*

Table (06): Some phenolic compounds of methanolic extract *C.tinctoria*

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.175</td>
<td>11788</td>
<td>878</td>
<td>0.067</td>
<td>0.104</td>
</tr>
<tr>
<td>2</td>
<td>0.404</td>
<td>4366</td>
<td>400</td>
<td>0.025</td>
<td>0.047</td>
</tr>
<tr>
<td>3</td>
<td>2.530</td>
<td>64464</td>
<td>6902</td>
<td>0.365</td>
<td>0.818</td>
</tr>
<tr>
<td>4</td>
<td>2.688</td>
<td>80195</td>
<td>6846</td>
<td>0.454</td>
<td>0.811</td>
</tr>
<tr>
<td>5</td>
<td>3.017</td>
<td>61384</td>
<td>5974</td>
<td>0.347</td>
<td>0.708</td>
</tr>
<tr>
<td>6</td>
<td>3.128</td>
<td>27201</td>
<td>5135</td>
<td>0.154</td>
<td>0.608</td>
</tr>
<tr>
<td>7</td>
<td>3.283</td>
<td>299949</td>
<td>44555</td>
<td>1.697</td>
<td>5.266</td>
</tr>
<tr>
<td>8</td>
<td>3.875</td>
<td>2449</td>
<td>628</td>
<td>0.014</td>
<td>0.074</td>
</tr>
<tr>
<td>9</td>
<td>4.136</td>
<td>252514</td>
<td>42811</td>
<td>1.429</td>
<td>5.071</td>
</tr>
<tr>
<td>10</td>
<td>4.826</td>
<td>92381</td>
<td>3907</td>
<td>0.523</td>
<td>0.463</td>
</tr>
<tr>
<td>11</td>
<td>5.150</td>
<td>71207</td>
<td>2929</td>
<td>0.403</td>
<td>0.347</td>
</tr>
<tr>
<td>12</td>
<td>6.037</td>
<td>84382</td>
<td>1894</td>
<td>0.478</td>
<td>0.224</td>
</tr>
<tr>
<td>13</td>
<td>6.646</td>
<td>44219</td>
<td>1530</td>
<td>0.250</td>
<td>0.181</td>
</tr>
<tr>
<td>14</td>
<td>7.047</td>
<td>39648</td>
<td>1442</td>
<td>0.224</td>
<td>0.171</td>
</tr>
<tr>
<td>15</td>
<td>7.687</td>
<td>85387</td>
<td>1743</td>
<td>0.483</td>
<td>0.206</td>
</tr>
<tr>
<td>16</td>
<td>9.054</td>
<td>277223</td>
<td>7288</td>
<td>1.569</td>
<td>0.863</td>
</tr>
<tr>
<td>17</td>
<td>9.875</td>
<td>39889</td>
<td>1612</td>
<td>0.226</td>
<td>0.191</td>
</tr>
<tr>
<td>18</td>
<td>10.600</td>
<td>37778</td>
<td>1427</td>
<td>0.214</td>
<td>0.169</td>
</tr>
<tr>
<td>19</td>
<td>11.143</td>
<td>87140</td>
<td>3239</td>
<td>0.493</td>
<td>0.384</td>
</tr>
<tr>
<td>20</td>
<td>11.640</td>
<td>237241</td>
<td>11274</td>
<td>1.342</td>
<td>1.336</td>
</tr>
<tr>
<td>21</td>
<td>12.640</td>
<td>125909</td>
<td>3036</td>
<td>0.712</td>
<td>0.360</td>
</tr>
<tr>
<td>22</td>
<td>13.437</td>
<td>124803</td>
<td>2429</td>
<td>0.706</td>
<td>0.288</td>
</tr>
<tr>
<td>23</td>
<td>14.697</td>
<td>126121</td>
<td>2149</td>
<td>0.714</td>
<td>0.255</td>
</tr>
<tr>
<td>24</td>
<td>16.101</td>
<td>68710</td>
<td>1719</td>
<td>0.389</td>
<td>0.204</td>
</tr>
<tr>
<td>25</td>
<td>16.437</td>
<td>40214</td>
<td>1860</td>
<td>0.226</td>
<td>0.197</td>
</tr>
<tr>
<td>26</td>
<td>16.893</td>
<td>51947</td>
<td>1555</td>
<td>0.294</td>
<td>0.184</td>
</tr>
<tr>
<td>Compounds</td>
<td>Concentration (µg /mg Ext)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>1.152</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naringin</td>
<td>27.456</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the results of qualitative analysis of methanolic extract of *C. tinctoria*, which obtained by HPLC method (High Performance Liquid Chromatography), we noticed a few known phenolic compounds (2 compounds)

Table (07): Concentration of some known phenolic compounds of methanolic extract of *C. tinctoria*
Chapter II: Results & Discussion

According to table (07), there is a contrast between the concentration of the two compounds: chlorogenic acid and naringin (1.152 µg/mg Ext and 27.456 µg/mg Ext), respectively.
Chapter II: Results & Discussion

2- Discussion:

2-1- Extraction yield:

In the extraction process, the most important criterion to be evaluated is the extraction yield (quantity in percentage). Based on the results shown in this study, there are quantitative differences between *Cistanche tinctoria* extracts, this fluctuation in the extraction yield could be explained by the reasons below:

- Solvent characteristics: the characteristics that should be considered include the type of solvent used and its polarity it is known that Ethyl acetate and characterized by a weak polarization compared to Methanol, which explains the low yield at the Ethyl acetate extract. (Lee et al., 2003),

- The conditions of plant collection are among the factors affecting the extraction yield, as well as the drying process and storage conditions of the plant. Also, the type of extraction process (Maceration) and quantity of the solvent for the plant material as well as the duration of the extraction process will determine the value of the yield (Madi, 2010; جيدل، 2015).

- It may be due to the exposure of the plant to the different stresses that play a role in the change of its physiology, thereby changing the nature and quality of plant compounds (Ibrahim et al., 2008).

- It may be due to the age of the plant at the time of study, because, the yield of chemical compounds of perennial plants retracts with the increasing in plant life.

- It can also traced back to the geographical location and nature of the climate prevailing in the plant growth and presence environment, which can determine the quality and quantity of its compounds (Sidney et al., 2016).

2-2- Total phenolic and flavonoid contents:

Phenolics and flavonoids are secondary plant metabolites that are ubiquitously observed among the plant *Cistanche tinctoria*. The presence of such metabolites enhances the level of antioxidant.

In the present study, the total phenolic content of crude extract of *Cistanche tinctoria* was determined using the Folin-Ciocalteu method and the results obtained were 167.74 ± 24.36 (mg GAE/g DM). Beside phenolic compounds, the biological effects of many plant raw materials depend on flavonoids; therefore, studies of the variation in their content are
important and relevant. This study determined the total flavonoid contents in the crude extract of *Cistanche tinctoria* (flowers), which was 26.76 ± 2.69 (mg QE/g DM). These high results may be due to using methanol as a solvent, because methanol is the most suitable solvent for the extraction of phenolic compounds due to its ability to inhibit the reaction of polyphenols oxidase that cause the oxidation of phenolics and its ease of evaporation as compared as water (Yao et al., 2004).

Actually, the total content of phenolics or flavonoids is controlled by many parameters and conditions, one of them is the environmental factors in which plant grows such as: the season and date of collecting, soil composition, climate, temperature, light, humidity, salt and water stress (Hermans et al., 2006). Also, the quantity and quality of the compound are greatly affected by the plant age and its stage of growth. Drying and extraction methods have an effective role in the total contents of phenolic and flavonoid in the extracts (Toledo et al., 2011).

The data on the patterns of variation in the total phenolic and flavonoid contents of flowers of *Cistanche tinctoria* are scarce. Therefore, this study provides new knowledge about total phenolic and flavonoid contents in *Cistanche tinctoria*.

2-3- **Antioxidant activity:**

In this study, three different assays were used to evaluate antioxidant activities of *Cistanche tinctoria* (flowers). Each of them employs a different mechanism and reaction to detect antioxidant compounds. We applied these three assays because there is no single assay, which will accurately reflect all antioxidants and radical sources in such an intricate system due to their complex composition (Nuutila et al., 2003), Prior et al (2005) also assert that there is no simple universal antioxidant assay by which antioxidant capacity can be measured accurately and quantitatively.

2-3-1- **DPPH assay:**

DPPH is stable nitrogen-centered free radical, it is largely used for evaluating scavenging activity of antioxidant standards and plant extracts with a characteristic absorbance at 517 nm, which decreases in the presence of free radical scavengers. By accepting hydrogen from a corresponding donor, the DPPH turns from blue violet to light yellow in color. Lighter color indicates a better antioxidant ability. This scavenging activity has been widely used as a quick and reliable parameter to evaluate the general in vitro antioxidant activity of plant extracts (Chen et al., 2018).
Chapter II: Results & Discussion

Based on the results obtained, there is a fluctuation in the scavenging activity between the extracts, Tannin extract exhibited the highest inhibition of DPPH radical scavenging activity as compared to other extracts. However, all the extracts were considered as having low scavenging activity if compared to the standard "ascorbic acid".

We know that "The low IC\textsubscript{50} value indicates the greater radical scavenging activity under the same testing conditions" (Johari and Khong, 2019); so, according to the results we had, we could say that the percentage of DPPH scavenging activity of the extracts is lower than the one of the positive control (Ascorbic acid), these results don’t support the ones obtained by Ould Saadi (2016), who found that the Ethyl acetate extract was the most potent in terms of IC\textsubscript{50} values of DPPH scavenging activity when it compared to the two standard compounds: BHT and Ascorbic acid.

The fluctuation in the scavenging activity between the extracts could be because the structure and kind of phenolic compounds and their concentration in the tested samples. The content of polyphenols is one the main reasons of the antioxidant activity of the plant, because the recent studies showed that these compounds possess powerful antioxidant activity due to the hydroxyl groups in the aromatic ring (Debouba et al., 2012; Diplock, 1997), also the content of flavonoids had and effect on it, according to the research conducted by Zheng et al. (2010) about the inhibition effect of 13 flavonoids on DPPH radical, they found that the hydroxyl groups and their situation have a big role in the inhibition effect, due to their ability of giving the hydrogen, and contain of double bond between the two carbon atoms (C\textsubscript{2} and C\textsubscript{3}) (Javanmardi et al., 2003; Cai et al., 2004)

Ascorbic acid was used as a positive standard in this assay due to doubts concerning the direct determination of DPPH obtained from calibration curve (Molyneux., 2004). Moreover, Ascorbic acid has already proven as a good antioxidant and radical scavenger. Previous research by Brand-Williams et al. (1995), Kim et al. (2002) and Truong et al. (2019), also used ascorbic acid as standard for DPPH radical scavenging assay.

2-3-2- Hemolysis assay:

Hemolysis assay is one of the easiest methods used for evaluating antioxidant activity, in this assay, the red blood cells were selected as the study model of interactions between oxidants and antioxidants because they are characterized by a membrane rich in unsaturated fatty acids, which are so sensitive to free radicals, thus oxidizing them and they are also responsible for oxygen transport to the hemoglobin molecules (Cooper, 1991; Aibirami et al., 2014).
Chapter II: Results & Discussion

In general, oxidative stress causes lipid oxidation of red blood cell membranes, so causing dysfunction for them by influencing their fluidity and the functions of receptors in membranes, these imbalances are the cause of RBCs decomposition (Dolci and Panteghini, 2014).

In this study, the ability of red blood cells to resist free radicals in the extracts had been tracked by spectrophotometry. The results obtained showed that there is a fluctuation between them, but it was a big one compared to the standard compound which is Ascorbic acid. Actually, this result supports the one obtained when we applied the DPPH assay that the plant has a weak antioxidant activity in comparison with the one of Ascorbic acid, this activity of plant might be due to its phenolic compounds, because they raise the possibility of protecting biofilms by preventing them from oxidation by free radicals, which means they are antioxidant agents which can act as free radicals terminators (Judith, 2005; Kalaivani et al., 2011).

2-3-3- Reducing power assay:

Reducing power is linked with the antioxidant potential of a compound so it may serve as a good indicator of antioxidant activity. In this assay, the yellow color of the test solution changes to various shades of green and blue, depending on the reducing power of extract (Makni et al., 2018).

The presence of reducers in sample causes the reduction of the Fe$^{3+}$ to Fe$^{2+}$. Thus, the higher the reducer concentration, the higher amount of Fe$^{2+}$ which becomes evident with high absorbance of the sample. These reducers show their antioxidant action by breaking the free radical chain by donating a hydrogen atom and also react with certain precursors of peroxide, which in turn prevents peroxide formation (Makni et al., 2018; Benzie and Strain, 1999; Lahmar et al., 2017).

Some earlier workers have observed a direct correlation between antioxidant activity and reducing power of certain plant extracts (Guo et al., 2011). In the present study also, reducing power of all extracts increases with increase in concentration which is in close correlation with its observed antioxidant activity. Thus, these reducers must be responsible for the antioxidant property of extracts (Kemewele Saague et al., 2019).

This assay further confirmed the antioxidant properties of the extracts observed from the DPPH assay. The correlation between reducing power and DPPH values could be due to the same mechanism on which these methods rely (Jothy et al., 2012).
Chapter II: Results & Discussion

1-4- High Performance Liquid Chromatography (HPLC):

In this study, the chemical composition of *Cistanche tinctoria* was analyzed using an HPLC system with detection at 268 nm. Based on the results obtained by this test which was applied on the crude extract of *Cistanche tinctoria*, we figure out two kinds of phenolic compounds: Chlorogenic acid and Naringin.

According to Gil and Wianowska (2017), chlorogenic acid is an ester formed from cinnamic acids and quinic acid and is also known as 5-O-caffeoylquinic acid (5-CQA), it exhibits many biological properties, including antibacterial, antioxidant and anticarcinogenic activities (Sanatana-Galves et al., 2017), while Naringin is a predominant flavanone glycoside (flavonoid) found in many plants, it has been reported to show various properties such as antioxidant and antimicrobial activities (Sivanesan et al., 2019).

Both of these compounds have health benefits, for example, in the case of Chlorogenic acid, these health benefits are a result of CGA donating hydrogen atoms to reduce free radicals and to inhibit oxidation reactions (Liang and D.kitts, 2015).
Conclusion
Conclusion

In recent years, there has been increasing interest in the valuation of wild plants, especially local ones, and their exploitation in several domains according to their compounds. So we conducted this phytochemical study which aims to valuing one of the desert plants which is *Cistanche tinctoria* that grows in our local environment: Oued-souf region (located in the south-east of Algeria).

In this work we have prepared three extracts (Crude, flavonoid and tannin extract) using the Maceration method, accordingly we could estimate the extraction yield, where the highest value was recorded by the crude extract.

In order to determine the total phenolic and flavonoid contents of the crude extract, we used the Folin-Ciocalteu and AlCl$_3$ as reagents, respectively. The results were 167.74 ± 24.36 mg EAG/g Extract, 26.76 ± 2.69 mg EQu/g Extract.

For determine the antioxidant activity we applied three assays, the first one was DPPH radical scavenging assay, which has become one of the most frequently used methods for evaluating the antioxidant capacity and it's based on determining the IC$_{50}$ value, which is the total necessary to decrease the initial DPPH radical by 50%, the results of this assay showed that that tannin extract had the best inertial capacity than the other extracts with IC$_{50}$ = 8.12 μg/ml, followed by the crude extract and flavonoid extract with IC$_{50}$ = 22.52 μg/ml and 19.8 μg/ml, respectively. The second was Hemolysis test, this test is applied to determine the ability of the plant extracts to protect the erythrocyte blood cells from damage or disruption of the cell membrane after exposing them to oxidative stress and free radicals by measuring the percentage of dissolved erythrocytes and its results showed that the Flavonoid extract got the lowest disintegration (22.47%) between the extracts, whereas crude and tannin extract were recorded: 33.49% and 43.71%, respectively. These tow assays were followed by a third one which is Reducing power assay, where the results obtained showed showed that the tannin extract had the highest reducing power between the extracts of *Cistanche tinctoria* (Desf). Beck.

Also, we knew some of phenolic compounds of methanolic extract of *Cistanche tinctoria* (Desf). Beck. (Flowers) using HPLC method that showed differences of concentrations and types of these phenolic compounds.
Conclusion

Finally, *Cistanche tinctoria* is one of the plants that has a few studies about it, so, we hope that the further studies will focus on detecting the compounds of other extracts of this plant and try to apply other experiences on other parts of it.
References
References

English/ French references:

26. CHANFORAN C., 2010- Stabilité de microconstituants de la tomate (Composés phénoliques, caroténoïdes, vitamines C et E) au cours des procédés de transformation: études en systèmes modèles, mise au point d'un modèle stoéchiétique et validation pour l'étape unitaire de préparation de sauce tomate. Thèse de doctorat, Université d'Avignon, p: 388.

45. GAIKWAD S. A., KAMBLE G. S., DEVARE S., R.DESHPANDE N & P.SALVEKA J – 2011 – In vitro evaluation of free radicals scavenging potential of
References

References

78. LOÏC L., 2011- Effet protecteur des polyphénols de la verveine odorante dans un modèle d'inflammation colique chez le rat. Thèse de doctorat, Université d'Auvergne – Clermont – Ferrand I, P: 263.

79. MADI A., 2010- Caractérisation et comparaison du contenu polyphénolique de deux médicinales (Thym et Sauge) et la mise en évidence de leurs activités biologiques. Mémoire de Magister, Université Mentouri, Constantine, P: 55-78.

80. MAKSYME M., 2014- High density stress response in plants and the role of anthocyanin biosynthesis under adverse environmental conditions. These of doctorate, University of Guelph – Canada. P: 112.

88. MONOWAR T., RAHMAN MD. S., J. BHOR S., RAJU G & V.SATHASIVAM K., 2019 – Secondary Metabolites Profiling of *Acinetobacter*

111. SANTANA-GALVES J., CISNEROS-ZEVALLOS L & JACOBO-VELAZQUES A., 2017 – chlorogenic Acid: Recent Advances on its Dual Role as a
References

المراجع العربية:

1. بن خناثة م، 2014 – تخرج لنيل شهادة ماجستير أكاديمي، جامعة قاصدي مرباح، ورقة، ص: 83.
3. بن سلامة ع، 2011 – النشاطات المضادة للأكسدة والمثبتة للإنزيم المؤكسد للكراتنين لمستخلصات أوراق نبتة Ferula vesceritensis. مذكرة لنيل شهادة ماجستير، جامعة قاصدي مرباح، ورقلة، ص: 38.
5. بن سلامة ع، 2015 – تدريب المحتوى الفينولي والتأثير المضاد للأكسدة لمستخلصات نباتات Pistacia و Convolvulus supinussscos. أطروحة مقدمة لنيل شهادة الدكتوراه، جامعة فرحات عباس، سطيف، ص: 76-85.
7. حوقة س و مرغني أ، 2016 – الدراسة في دراسة فيتو كيميائية والفعالية البيولوجية لنبات الرتم. الرم. النامي في منطقة وادي سوف. مذكرة لنيل شهادة ماجستير أكاديمي، جامعة الشهيد حمّه لخضر، الوادي، ص: 19.
Annexes
Annexes:

1- The materials used:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
</tr>
</thead>
</table>
| BUCHI LAORTECHNIC AG | Type: R-21
SN: 1000048012
Volt: 240-100VAC
Frequ: 60 / 50Hz
Power: 60W
Built 2010
T 1.6 A L 250 V (2x) |
| Rotary evaporator |
| SHIMADZU CORPORATION | MODEL: UV mini-124
No. CAT: 24-206 ---- 38
SERIAL NO.: A
10934603363 CD 220-240 V~
60 / 50Hz 160VA
MADE IN JAPAN |
| Spectrophotometry |
2- The linear calibration curves of DPPH assay:

A linear calibration curve of the crude extract (DPPH assay)
A linear calibration curve of Flavonoid extract (DPPH assay)

A linear calibration curve of Tannin extract (DPPH assay).

3- The linear calibration curves of Reducing power assay:

A linear calibration curve of the Crude extract (Reducing power assay).
A linear calibration curve of Flavonoid extract (Reducing power assay).

A linear calibration curve of Tannin extract (Reducing power assay).
Co-auteurs: CHOUADAF

Le directeur du 1er Séminaire National sur la Biodiversité et Valorisation des Produits Biologiques dans les Régions Arides et Santi-Arides atteste que:

CHENGUEL Aouatif

Président du Comité d'Organisation

Dokki EL-IDrissi

Faculté des Sciences de la Nature et de la Vie

Département de Biologie

Université Echahid Hamma Lakhdar El Oued

Le 06-07 Mars 2019

Presente une communication affichée intitulée:

 Phytochemical study and biological activity of different extracts from flowers of parasitic plant

Cistanche fuscata (Desf.) Bock