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1 Introduction

By applying mathematical modeling to various phenomena of physics, biol-
ogy and ecology there often arise problems with non-classical boundary condi-
tions, which connect the values of the unknown function on the boundary and
inside of the given domain. Some times the physical phenomena are modeled
by non classical boundary value problems which involve a boundary condition
as an integral condition over the spatial domain of a function of the desired
solution. The nonlocal boundary condition arises mainly when the data on the
boundary cannot be measured directly, but their average values are known. In
the very recent years, nonlocal problems, particularly those with integral con-
straints have received great attention. The physical significance of nonlocal
conditions such as a mean, total mass, moments, etc, has served as a fundamen-
tal cause for the considerably increasing interest to this kind of boundary value
problems. Nonlocal problems are generally encountered in chemical engineering,
heat transmission, plasma physics, heat transmission, thermoelsticity and un-
derground water flow. See in this regard the papers by Ewing and Lin [3], Choi
and Chan [2]. As a special application see Bouziani [1], where the author has
considered a nonlocal problem which is proposed in the mathematical modeling
of technologic process of external elimination of gas, practices in the refining of
impurities of Silicon lamina.
In section 1, we state the problem, define some spaces and give a relevant

definition of weak solution. Section 2 is devoted to the study of existence of the
weak solution of the posed problem by applying Galerkin’s method.
In this paper, we are concerned with the following nonlocal mixed bound-

ary value problem for the n−dimensional Boussinesq equation non linear in a
cylinder QT = Ω × (0, T ), where Ω is a bounded domain in Rn with smooth
boundary ∂Ω. 

utt − α2∆u− β2∆utt = |u|p−2
u,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

∂u
∂η =

∫ t

0

∫
Ω

u(ξ, τ)dξdτ , x ∈ ∂Ω,

(1)
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where p > 2, ϕ(x) and ψ(x) are given functions and ∂u
∂η designates the normal

derivative.
Now let V (QT ) and W (QT ) be the set spaces defined respectively by:

V (QT ) =
{
u ∈W 1

2 (QT ) : ∇ut ∈ L2(QT ), u ∈ Lp(QT ), ut ∈ Lp(QT )
}
,

and
W (QT ) = {u ∈ V (QT ) : v(x, T ) = 0} . (2)

Consider the equation

(utt, v)L2(QT ) − α2 (∆u, v)L2(QT ) − β
2 (∆utt, v)L2(QT ) =

(
|u|p−2

u, v
)
L2(QT )

.

(3)
Evaluation of the inner products in (3) and use of boundary condition in (1)
leads

−(ut, vt)L2(QT ) + α2 (∇u,∇v)L2(QT ) − β
2 (∇ut,∇vt)L2(QT )

=
(
|u|p−2

u, v
)
L2(QT )

− (ψ(x), v(x, 0))L2(Ω) + α2

∫
∂Ω

∫ T

0

v(x, t)

(∫ t

0

∫
Ω

u(ξ, τ)dξ

)
dtdsx

+β2

∫
∂Ω

∫ T

0

v(x, t)

(∫
Ω

ut(ξ, t)dξ

)
dtdsx − β2

∫
∂Ω

∫ T

0

v(x, t)

(∫
Ω

ut(ξ, 0)dξ

)
dtdsx

+β2(∇ψ (x) ,∇v (x, 0))L2(Ω), (4)

∀v ∈W (QT ).
Definition 1.1. A function u ∈ V (QT ) is called a generalized solution of
problem (1), if it satisfies equation (4) for each v ∈W (QT ) and u(x, 0) = ϕ(x).

2 Solvability of the problem

We now give the main result on the existence of solution of problem (1) and
prove it by using the Galerkin method.

Theorem 1 If ϕ(x) ∈ W 1
2 (Ω), ψ(x) ∈ Lp(Ω) and ψ(x, t) ∈ W 1

2 (Ω), then there
is at least one generalized solution in V (QT ) to problem (1).
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