
BRESSE-TIMOSHENKO SYSTEM : WELL-POSSEDNESS AND

STABILITY RESULTS

F. YAZID AND D. OUCHENANE

Abstract. In this paper, we consider a Bresse-Timoshenko type system with

distributed delay term. Under suitable assumptions, we establish the global
well-posedness of the initial and boundary value problem by using the Faedo-

Galerkin approximations and some energy estimates. By using the energy

method, we show the exponential stability results for the system with delay in
vertical displacement.

1. introduction

In this paper, we deal with a nolinear Bresse-Timoshenko type system with
distributed delay, under appropriate assumptions and we study the exponential
decay.
It is related to the problem of stability for dissipative models of the Timoshenko
type related to the problem of the damage consequences of the so called second
spectrum of frequencies, or simply second spectrum. We mention the recent works
in [2]-[4] and [10], the distributed delay is not explicitly presented, and therefore it
makes sense to consider the problems in this paper. In [18], a Timoshenko system
is considered {

ρ1ϕtt − β(ϕx + ψ)x = 0
ρ2ψtt − bψxx + β(ϕx + ψ) + µψt = 0

(1)

and after an explanation about the meaning of second spectrum based on existing
literature, the authors showed that the viscous damping acting on angle rotation
of (1).

To the best of our knowledge, the first contribution in that direction was obtained
by Manevich and Kolakowski [16]. They analyzed the dynamic of a Timoshenko
model where the damping mechanism is viscoelastic. More precisely, they consid-
ered the dissipative system given by{

ρ1ϕtt − β(ϕx + ψ)x − µ1(ϕx + ψ)tx = 0
ρ2ψtt − bψxx + β(ϕx + ψ)− µ2ψttx + µ1(ϕx + ψ)t = 0

(2)

Secondly, based on Elishakoff’s papers and collaborators and their studies on trun-
cated versions for classical Timoshenko equations [1] (see also recent contributions
of Elishakoff et al. [7]-[8]), Almeida Junior and Ramos [2] showed that the total
energy for viscous damping acting on angle rotation of the simplified Timoshenko
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system given by {
ρ1ϕtt − β(ϕx + ψ)x = 0
−ρ2ϕttx − bψxx + β(ϕx + ψ) + µ1ψt = 0

(3)

The model is very different from classical Timoshenko system, since it contains three
derivatives: two derivatives with respect to time and one derivative with respect to
space. The reason behind this is the absence of the second spectrum or non-physical
spectrum [1, 8] and its damage consequences for wave propagation speeds [2]. We
can find the historical and mathematical observations in [1, 8]. The same results
are achieved for a dissipative truncated version where the viscous damping acts on
vertical displacement {

ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt = 0
−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0

(4)

Then, in order to get more consistent exponential decay results in light of the
absence of second spectrum, Almeida Junior et al. [4] considered two cases of
dissipative systems for Bresse-Timoshenko type systems with constant delay cases.
For the first one, the authors proved the exponential decay for the system given by{

ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt + µ2ϕt(x, t− τ) = 0
−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0

(5)

For the second one, the authors also proved the exponential decay result for the
system given by{

ρ1ϕtt − β(ϕx + ψ)x = 0
−ρ2ϕttx − bψxx + β(ϕx + ψ) + µ1ψt + µ2ψt(x, t− τ) = 0

(6)

Feng et al. [10] considered two cases of dissipative systems for Bresse-Timoshenko
type systems with time-varying delay cases. For the first one, the authors proved
the exponential decay for the system given by{

ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt + µ2ϕt(x, t− τ(t)) = 0
−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0

(7)

For the second one, the authors also proved the exponential decay result for the
system given by{

ρ1ϕtt − β(ϕx + ψ)x = 0
−ρ2ϕttx − bψxx + β(ϕx + ψ) + µ1ψt + µ2ψt(x, t− τ(t)) = 0

(8)

A complement to these works, we are working to establish the global well-
posedness of the initial and boundary value problem by using the Faedo-Galerkin
approximations and some energy estimates. And prove the exponential decay of two
cases of dissipative systems for Bresse-Timoshenko type systems with distributed
delay, under appropriate assumptions and we prove these results using the energy
method and with the help of convex functions. In the following, let c a positive
constant.

2. Distributed delay and viscous damping in vertical displacement

Here, we are concerned with the following system given by ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt +

∫ τ2

τ1

|µ2(p)|ϕt (x, t− p) dp = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0
(9)
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where

(x, p, t) ∈ (0, 1)× (τ1, τ2)× (0,∞)

Additionally, we consider initial conditions given by{
ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ϕtt (x, 0) = ϕ2 (x)
ϕttt(x, 0) = ϕ3(x), ψ (x, 0) = ψ0 (x) , x ∈ (0, 1)

(10)

where ϕ0, ϕ1, ϕ2, ψ0, are given functions, and boundary conditions of Dirichlet-
Dirichlet given by

ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ(1, t) = 0, t > 0 (11)

Wherever, ϕ is the transverse displacement of the beam, ψ is the angle of rotation,
and ρ1, ρ2, b, β > 0 and the integral represents the distributed delay term with
τ1, τ2 > 0 are a time delay, µ1 is positive constant, µ2 is an L∞function.
(A1) µ2 : [τ1, τ2]→ R is a bounded function satisfying∫ τ2

τ1

|µ2(p)|dp ≤ µ1 (12)

In order to deal with the disributed delay feedback term, motivated by [17], let use
introduce a new dependent variable

y(x, τ, p, t) = ϕt(x, t− pτ), (13)

Using (13), we have {
pyt(x, τ, p, t) = −yτ (x, τ, p, t)
y(x, 0, p, t) = ϕt(x, t).

(14)

Thus, the problem is equivalent to
ρ1ϕtt − β(ϕx + ψ)x + µ1ϕt +

∫ τ2

τ1

|µ2(p)|y (x, 1, p, t) dp = 0

−ρ2ϕttx − bψxx + β(ϕx + ψ) = 0
pyt(x, τ, p, t) + yτ (x, τ, p, t) = 0

(15)

where

(x, τ, p, t) ∈ (0, 1)× (0, 1)× (τ1, τ2)× (0,∞).

Additionally, we consider initial conditions given by
ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ϕtt (x, 0) = ϕ2 (x)
ϕttt(x, 0) = ϕ3(x), ψ (x, 0) = ψ0 (x) , x ∈ (0, 1)
y (x, τ, p, 0) = f0(x,−pτ), yt (x, τ, p, 0) = f1 (x,−pτ) , in (0, 1)× (0, 1)× (0, τ2),
ytt (x, τ, p, 0) = f2 (x,−pτ) , in (0, 1)× (0, 1)× (0, τ2)

(16)
where ϕ0, ϕ1, ϕ2, ψ0, f0, f1, are given functions, and boundary conditions of Dirichlet-
Dirichlet given by

ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ(1, t) = 0, t > 0 (17)

Next we say that the global well-posedness of problem (15)-(17) given in the
following theorem.

Theorem 2.1. Assume the assumption (12) holds. If the initial data (ϕ0, ϕ1, ϕ2, ϕ3, ψ0)
is in (H1

0 (0, 1) × L2(0, 1) × L2(0, 1) × L2(0, 1) ×H1
0 (0, 1)), f0, f1, f2 ∈ L2((0, 1) ×

(0, 1)× (τ1, τ2)), then problem (15)-17) has a weak solution such that

ϕ ∈ C(R+, H
1
0 (0, 1)) ∩ C1(R+, L

2(0, 1)), ψ ∈ C(R+, H
1
0 (0, 1))
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ϕt, ϕtt ∈ C(R+, L
2(0, 1)).

In addition, we have that the solution (ϕ,ϕt, ϕtt, ψ) depends continuously on the
initial data in H1

0 (0, 1) × L2(0, 1) × L2(0, 1) × H1
0 (0, 1). In particular, problem

(15)-17) has a unique weak solution.

2.1. The Global Well-Posedness. In this subsection, we will prove the global
existence and the uniqueness of the solution of problem (9)-(17) by using the clas-
sical Faedo-Galerkin approximations along with some priori estimates. We only
prove the existence of solution in (i). For the existence of stronger solution in (ii),
we can use the same method as in (i) and one can refer to Andrade e al. [6] and
Jorge Silva and Ma [13] and Feng [12].

2.1.1. Approximate Problem. which satisfy the following approximate problem:

ρ1(ϕmtt, uj) + β((ϕmx + ψj), umx) + µ1(ϕmt, uj)

+(

∫ τ2

τ1

|µ2(p)ym (x, 1, p, t) dp, uj) = 0,

b(ψmx, θjx) + ρ2(ϕmtt, θjx) + β((ϕmx + ψj), θmj) = 0

(pymt(x, τ, p, t), φj) + (ymτ (x, τ, p, t), φj) = 0

(pymtt(x, τ, p, t), φj) + (ymτt(x, τ, p, t), φj) = 0 (18)

with initial conditions

ϕm(0) = ϕm0 , ϕmt(0) = ϕm1 , ϕmtt(0) = ϕm2

ϕmttt(0) = ϕm3 , ψm(0) = ψm0 , ψmt(0) = ψm1 ,

ym(0) = ym0 , ymt(0) = ym1 , ymtt(0) = ym2 (19)

which satisfies

ϕm0 → ϕ0, strongly in H1
0 (0, 1)

ϕm1 → ϕ1, strongly in L2(0, 1)

ϕm2 → ϕ2, strongly in L2(0, 1)

ϕm3 → ϕ3, strongly in L2(0, 1)

ψm0 → ψ0, strongly in H1
0 (0, 1)

ψm1 → ψ1, strongly in H1
0 (0, 1)

ym0 → y0, strongly in L2((0, 1)× (0, 1)× (τ1, τ2))

ym1 → y1, strongly in L2((0, 1)× (0, 1)× (τ1, τ2)) (20)

ym2 → y2, strongly in L2((0, 1)× (0, 1)× (τ1, τ2)) (21)

By using standard ordinary differential equations theory, the problem (18)-(19) has
a solution (gjm, hjm, fjm)j=1,m defined on [0, tm). The following estimate will give
the local solution being extended to [0, T ], for any given T > 0.

2.1.2. A Priori Estimate I. It follows from (12), and (??) that∫ 1

0

ϕ2
mtdx+

∫ 1

0

ϕ2
mttdx+ ρ2

∫ 1

0

ϕ2
mtxdx+

∫ 1

0

(ϕmx + ψm)2dx

+

∫ 1

0

ψ2
mxdx+

∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|y2m(x, τ, p, t)dpdτdx
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+

∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|y2mt(x, τ, p, t)dpdτdx ≤ C (22)

Thus we can obtain tm = T , for all T > 0.

2.1.3. A Priori Estimate II. where

Gm(t) =
1

2

[
ρ1

∫ 1

0

ϕ2
mttdx+

ρ1ρ2
β

∫ 1

0

ϕ2
mtttdx+ ρ2

∫ 1

0

ϕ2
mttxdx

+β

∫ 1

0

(ϕmxt + ψmt)
2dx+ b

∫ 1

0

ψ2
mxtdx

]
+

1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|y2mt(x, τ, p, t)dpdτdx

+
ρ2
2β

∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|y2mtt(x, τ, p, t)dpdτdx

Similarly to A Priori Estimate I, we can get there exists a positive constant C
independent on m such that

Gm(t) ≤ C, t ≥ 0. (23)

2.1.4. Passage to Limit. From (22) and (23), we conclude that for any m ∈ N,

ϕm weakly star in L2(R+, H
1
0 )

ϕmt weakly star in L2(R+, L
2)

ϕmtt weakly star in L2(R+, L
2)

ψm weakly star in L2(R+, H
1
0 )

ψmt weakly star in L2(R+, L
2)

ym weakly star in L2(R+, L
2((0, 1)× (0, 1)× (τ1, τ2))

ymt weakly star in L2(R+, L
2((0, 1)× (0, 1)× (τ1, τ2)) (24)

By (24), we can also deduce that ϕm, ψm is bounded in L2(R+, H
1
0 ) and ϕmt, ϕmtt

is bounded in L2(R+, L
2). Then from Aubin-Lions theorem [15], we infer that for

and, T > 0,

ϕm strongly in L∞(0, T,H1
0 (0, 1))

ψm strongly in L∞(0, T,H1
0 (0, 1)) (25)

We also obtain by Lemma 1.4 in Kim [14] that

ϕm strongly in C(0, T,H1
0 (0, 1))

ψm strongly in C(0, T,H1
0 (0, 1)) (26)

Then we can pass to limit the approximate problem (18)-(19) in order to get a weak
solution of problem (15)-(17).

2.1.5. Continuous Dependence and Uniqueness. Firstly we prove the continuous
dependence and uniqueness for stronger solutions of problem (15)-(17).
Let (ϕ,ϕt, ϕtt, ϕ,Υ,Υt), and (Γ,Γt,Γtt,Ξ,Π,Πt) be two global solutions of problem
(15)-(17) with respect to initial data (ϕ0, ϕ1, ϕ2, ϕ0,Θ0,Θ1), and (Γ0,Γ1,Γ0,Ξ0,Φ0,Φ1)
respectively. Let

Λ(t) = ϕ− Γ
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Σ(t) = ϕ− Ξ

χ(t) = Π− Φ (27)

Then (Λ,Σ, χ) verifies (15)-(17), and we have

ρ1Λtt − β(Λx + Σ)x + µ1Λt +

∫ τ2

τ1

|µ2(p)|Λt (x, t− p) dp

−ρ2Λttx − bΣxx + β(Λx + Σ) = 0

pχt(x, τ, p, t) + χτ (x, τ, p, t) = 0 (28)

where

E(t) =
1

2

[
ρ1

∫ 1

0

Λ2
tdx+

ρ1ρ2
β

∫ 1

0

Λ2
ttdx+ ρ2

∫ 1

0

Λ2
txdx+ β

∫ 1

0

(Λx + Σ)2dx

+b

∫ 1

0

Σ2
xdx

]
+

∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|χ2 (x, 1, p, t) dpdτdx (29)

Applying Gronwall’s inequality to (??), we get

(‖Λt‖2 + ‖Λtt‖2 + ‖Λtx‖2 + ‖Σx‖2 + ‖(Λx + Σ)‖2

+

∫ 1

0

∫ τ2

τ1

p|µ2(p)|‖χ (x, 1, p, t) ‖2dpdτ) ≤ eC2tE(0) (30)

This shows that solution of problem (15)-(17) depends continuously on the initial
data.

2.2. Exponential stability. In this subsection, we will prove an exponential sta-
bility estimate for problem (15)− (17), under the assumption (12), and by using a
multiplier technique.

We define the energy of solution

E (t) =
1

2

∫ 1

0

[
ρ1ϕ

2
t + bψ2

x + β(ϕx + ψ)2 +
ρ1ρ2
β

ϕ2
tt + ρ2ϕ

2
tx

]
dx

+
1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx

+
1

2

ρ2
β

∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|y2t (x, τ, p, t) dpdτdx (31)

Then we have the following lemma.

Lemma 2.2. The energy E(t) satisfies

E ′ (t) ≤ −
(
µ1 −

∫ τ2

τ1

|µ2(p)|dp
)∫ 1

0

ϕ2
tdx−

(
µ1 −

∫ τ2

τ1

|µ2(p)|dp
)∫ 1

0

ϕ2
ttdx

≤ −η0
∫ 1

0

ϕ2
tdx− η0

ρ2
β

∫ 1

0

ϕ2
ttdx ≤ 0 (32)

where η0 = µ1 −
∫ τ2

τ1

|µ2(p)|dp ≥ 0.

Lemma 2.3. The functional

F1 (t) := −µ1

2

∫ 1

0

ϕ2
tdx− β

∫ 1

0

ϕtxϕxdx (33)
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satisfies

F ′1 (t) ≤ −β
∫ 1

0

ϕ2
txdx+ ε1

∫ 1

0

ψ2
xdx+ c(1 +

1

ε1
)

∫ 1

0

ϕ2
ttdx

+c

∫ 1

0

∫ τ2

τ1

|µ2(p)|y2(x, 1, p, t)dpdx (34)

Lemma 2.4. The functional

F2 (t) := ρ1

∫ 1

0

ϕϕtdx+
µ1

2

∫ 1

0

ϕ2dx+
µ1ρ2
2β

∫ 1

0

ϕ2
tdx+ ρ2

∫ 1

0

ϕtxϕxdx

satisfies,

F2(t) ≤ −ρ1ρ2
2β

∫ 1

0

ϕ2
ttdx−

β

2

∫ 1

0

(ϕx + ψ)2dx− b
∫ 1

0

ψ2
xdx

+ρ2

∫ 1

0

ϕ2
txdx+ ρ1

∫ 1

0

ϕ2
tdx

+c

∫ 1

0

∫ τ2

τ1

|µ2(p)|y2(x, 1, p, t)dpdx. (35)

Lemma 2.5. The functional

F3 (t) :=

∫ 1

0

∫ 1

0

∫ τ2

τ1

pe−pτ |µ2(p)|y2 (x, τ, p, t) dpdτdx

+

∫ 1

0

∫ 1

0

∫ τ2

τ1

pe−pτ |µ2(p)|y2t (x, τ, p, t) dpdτdx.

satisfies,

F ′3 (t) ≤ −η1
∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|y2 (x, τ, p, t) dpdτdx+ µ1

∫ 1

0

ϕ2
tdx

−η1
∫ 1

0

∫ τ2

τ1

|µ2(p)|y2 (x, 1, p, t) dpdx

−η1
∫ 1

0

∫ 1

0

∫ τ2

τ1

p|µ2(p)|y2t (x, τ, p, t) dpdτdx+ µ1

∫ 1

0

ϕ2
ttdx

−η1
∫ 1

0

∫ τ2

τ1

|µ2(p)|y2t (x, 1, p, t) dpdx (36)

where η1 > 0.

Theorem 2.6. Assume (A1), there exist positive constants λ1 and λ2 such that
the energy functional (31) satisfies

E(t) ≤ λ2e−λ1t,∀t ≥ 0 (37)
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